Físico-Química Experimental I

Bacharelado em Química Engenharia Química

Prof. Dr. Sergio Pilling

Prática 5 – Tensão Superficial de Líquidos

Determinação da tensão superficial de líquidos. utilizando a técnica do peso da gota (lei de Tate). Influência da concentração e da temperatura na tensão superficial de líquidos.

Objetivos: Determinar a tensão superficial de substâncias pelo método do peso da gota (lei de Tate). Verificar o efeito da temperatura, concentração e raio do orifício na tensão superficial.

2) Introdução

As moléculas de um líquido interagem através de forcas de coesão (e.g. Van der Walls, pontes de hidrogênio), que se tornam fracas com a distância e, se tornam desprezíveis a distâncias maiores do que próximas de 0.1 micrometros. Portanto uma molécula de um líquido interage apenas com moléculas que estão dentro de seu "campo de coesão".

Quando a molécula esta dentro do volume de um líquido, sua forca de coesão é zero, pois as moléculas circumjacentes estão distribuídas de forma aproximadamente simétrica em seu redor. Contudo, Uma molécula na superfície livre do liquido é sujeita a forcas de coesão das moléculas das moléculas das camadas abaixo do liquido conforme é ilustrado na Figura 1. A superfície age como uma "membrana" que tende a comprimir o líquido. De fato na ausência de gravidade, por exemplo, na estação espacial internacional, um volume de água "livre" devido à forca de coesão promovida pelas moléculas de seu interior apresenta a forma esférica (veja Figura 2). A forma geométrica com a menor área superficial para um dado volume é a esfera. Na superfície a resultante das forcas de coesões internas é chamada de chamada aqui de tensão superficial.

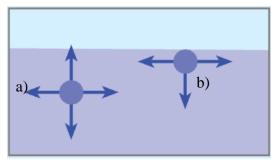


Fig 1. Modelo de forças de coesão atuando em uma molécula dentro do volume (a) de um liquido e na superfície (b).

Fig 2. Água na ausência de gravidade a assume a forma esférica devido as forcas de coesão das moléculas do volume do liquido. (vídeo em http://www.youtube.com/watch?v=Ta5ziJJ1exM)

As moléculas na superfície de um líquido estão sujeitas a fortes forças de atração das moléculas interiores. A resultante dessas forças, cuja direção é a mesma de plano tangente à superfície, atua de maneira a que a superfície líquida seja a menor possível. A grandeza desta força, atuando perpendicularmente (por unidade de comprimento) ao plano na superfície é dita **tensão superfícial** (γ).

A superfície ou interface onde a tensão existe está situada entre o líquido e seu vapor saturado no ar, normalmente a pressão atmosférica. A tensão pode também existir entre dois líquidos imiscíveis, sendo então chamada de tensão interfacial. A dimensão da tensão superficial é de força por unidade de comprimento, no sistema internacional é dada por N/m.

Um dos métodos mais utilizados para medir a tensão superficial é o método do peso da gota. Este método, assim como todos aqueles que envolvem separação de duas superfícies, depende da suposição de que a circunferência multiplicada pela tensão superficial é a força que mantém juntas as duas partes de uma coluna líquida. Quando esta força esta equilibrada pela massa da porção inferior, a gota desprende-se.

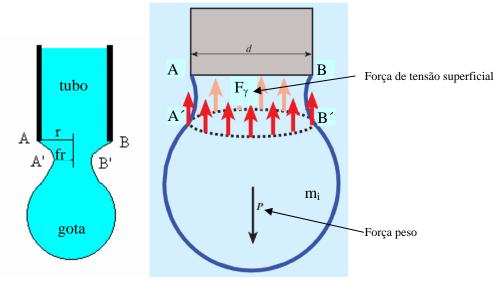


Fig 3. Método do peso da gota

A gota de massa ideal m_i se desprende do tubo no instante imediatamente após seu peso P se iguala as forças de tensão superficial F_γ que sustentam a gota.

$$F_{\gamma} = P = m_i g \tag{1}$$

As forças de tensão F_{γ} que mantém a gota ligada ao resto do liquido é dado pelo produto da circunferência que do orifício por onde a gota ira se formar (contem a linha AB) pela tensão superficial do líquido, uma propriedade inerente a cada liquido de tal forma que

$$F_{\gamma} = 2 \pi r \gamma \tag{2}$$

A partir das expressões (1) e (2) temos que o peso da gota é proporcional ao raio do tubo r e a tensão superficial do líquido γ . Esta é a denominada **lei de Tate.**

$$m_i g = 2 \pi r \gamma \quad \rightarrow \quad \gamma = \frac{m_i g}{2 \pi r}$$
 (3)

Contudo, devido ao fato da gota não se romper justo no extremo do tubo e sim, mais abaixo na linha A'B' de menor diâmetro e, que não há segurança de que o líquido situado entre os níveis AB e A'B' seja arrastado pela gota, existe um fator de contração de forma que a massa real da gota *m* difere

da massa ideal da gota através da expressão $m=m_i.f$. O fator f é chamado de coeficiente de contração e é determinado experimentalmente. Na prática, o peso da gota obtido, é sempre menor que o peso da gota ideal. A razão disto torna-se evidente, quando o processo de formação da gota é observado mais de perto. A figura abaixo ilustra o que realmente acontece.

Fig 4. Fotografias de alta velocidade de uma gota caindo.

Observa-se que somente a porção mais externa da gota é que alcança a posição de instabilidade e cai. **Perto de 40% do líquido que forma a gota permanece ligada ao tubo.**

Levando em consideração o fator de contração f podemos escrever a lei de Tate para a massa verdadeira da gota como

$$\gamma = \frac{m}{f} \frac{g}{2 \pi r} \tag{4a}$$

sendo m a massa da gota, g a aceleração da gravidade.

Para minimizarmos o erro experimental recomenda-se fazer a medida da massa de um numero grande de gotas e depois dividir esse valor pela quantidade de gotas empregada. De tal forma que a Eq. 4a pode ser escrita como

$$\gamma = \frac{m_t / n}{f} \frac{g}{2 \pi r} \tag{4b}$$

onde m_t representa a massa total das gotas pingadas e n é o numero de gotas.

A aplicação desta lei nos permite realizar medidas relativas da tensão superficial. Sabendo a tensão superficial da água podemos medir a tensão superficial do líquido em estudo.

O fator de correção f é uma função do raio do tubo e do volume da gota. Observe que a devido a dilatação dos líquidos em temperaturas altas o valor de f pode mudar com a temperatura. Na maioria dos casos utilização com boa aproximação o valor f=0.6

3) Determinação do diâmetro do tubo de vidro (ou da agulha)

A determinação do diâmetro do tubo pode ser feita de basicamente 2 maneiras:

- i) O diâmetro do tubo pode ser medido utilizando-se um paquímetro ou micrometro.
- ii) Pode ser estimado a partir da massa de uma gota de um líquido padrão/referência (ex. água destilada), cujo valor da tensão superficial seja conhecido. A tensão da água destilada próximo de 20° C é $\gamma = 0.0728$ N/m. Medindo-se a massa de um numero n de gotas (por exemplo, 50 gotas para minimizar o erro) calcula-se o diâmetro do tubo (em metros) a partir da expressão:

$$d = 2r \sim \frac{\frac{m_t}{n}}{0.6} \frac{9.8}{3.1416} \frac{1}{\gamma}$$
 (5)

onde m_t representa a massa total das gotas pingadas e n é o numero de gotas.

A massa de uma única gota de água destilada a 20°C, para tubos de diferentes diâmetros, é apresentada na tabela abaixo.

Tabela 2 – Massa de uma gota de água que se desprende de tubos de diferentes diâmetros.

massa da gota (g)	raio do tubo (cm)	massa da gota (g)	raio do tubo (cm)
0.033450	0.09946	0.090467	0.31891
0.042347	0.13062	0.091620	0.32692
0.046901	0.14769	0.096392	0.34188
0.054678	0.17750	0.096918	0.34385
0.059700	0.19666	0.09868	0.35022
0.068026	0.23052	0.10623	0.37961
0.069869	0.23790	0.10966	0.39262
0.072682	0.23135	0.11161	0.39968
0.07753	0.26802	0.11957	0.42765
0.079680	0.27605	0.12522	0.44755
0.084270	0.29423	0.12575	0.44980
0.084880	0.29694	0.14142	0.50087

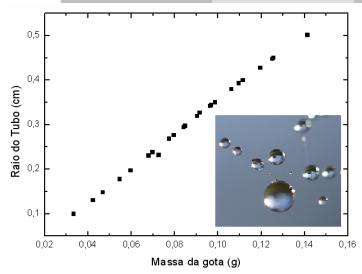


Fig5. Dependência da massa da gota de água destilada em função do raio do tubo a 20° C.

Para temperaturas superiores ou inferiores a 20°C, mas não muito diferentes, pode-se usar a seguinte relação para calcular a massa da gota de água a 20°C.

$$\frac{m(20^{\circ}C)}{m(x^{\circ}C)} = \frac{\gamma(20^{\circ}C)}{\gamma(x^{\circ}C)}$$

Esta relação também funciona se quisermos obter a tensão superficial de líquidos diferentes obtidos a uma mesma temperatura.

$$\frac{m_a}{m_b} = \frac{\gamma_a}{\gamma_b}$$

Exemplo 1.

Em um experimento utilizando uma seringa e agulha após o gotejamento mediu-se a massa de 10 gotas de água destilada cujo valor foi de 586 mg. Em seguida mediu-se a massa de 10 gotas de óleo cujo valor foi de 267 mg. Qual foi a tensão superficial do óleo?

Solução: Segundo a lei de Tate temos:

$$\frac{m_a}{m_b} = \frac{\gamma_a}{\gamma_b} \to \frac{586}{267} = \frac{0.0728}{\gamma_b}$$

Logo a tensão superficial do óleo será de 0.033 N/m.

4) Procedimento experimental

Matérias equipamentos

- Balança analítica
- Bureta
- Pipetas de tamanhos variados
- Seringa com agulhas de diâmetros variados
- Diversos Béquers de 50 ml.
- 18 tubos de ensaio
- Paquímetro ou micrometro.
- Placa aquecedor ou bico de Bunsen
- Termômetro.

Reagentes:

- Água destilada (±500mL)
- Etanol (±60 mL)
- Glycerol (±60mL)
- Gelo

EXPERIMENTO 1 – Determinação do raio do tubo

Determinar o raio do tubo que será utilizado para o gotejamento utilizando como referência o valor da tensão superficial da água destilada a 20° C, $\gamma = 0.0728$ N/m = 72.8 mN/m.

- A) Usar 40 gotas para este procedimento.
- B) Usar a equação 5 para determinar o raio do tubo.
- C) Se possível, comparar o valor determinado para o diâmetro do tubo com o valor medido utilizando um paquímetro ou micrometro.
 - D) Discutir sobre os erros envolvidos na metodologia.

EXPERIMENTO 2 – Efeito da concentração (glicerol) na Tensão superficial

Após determinar o diâmetro do tubo que será utilizado para o gotejamento, preparar 6 soluções de glicerol conforme a tabela abaixo, cada uma com 20 mL. Realizar o gotejamento das soluções em um béquer e medir a massa das gotas. OBS. Não esqueça de medir a massa do béquer antes para poder subtrair seu valor das medidas. Em seguida calcule a tensão superficial de cada uma das soluções. Considere o fator de correção f = 0.6. Usar a equação 4b para calcular γ .

Tubo	Solução	Massa de 40 gotas (em kg)			Tensão Superficial
	(valores em volume)	med1.	med2.	média	γ (N/m)
#1	95% água + 5% glicerol				
#2	70% água + 30% glicerol				
#3	50% água + 50% glicerol				
#4	30% água + 70% glicerol				
#5	10% água + 90% glicerol				

Faca um gráfico mostrando a concentração percentual do glicerol em função da tensão superficial e a partir de um ajuste aos pontos experimentais determine o valor da tensão superficial de uma solução contendo 60% água e 40% glicerol.

Discuta seus resultados.

No gráfico, faça uma extrapolação dos pontos até uma concentração de glicerol igual a 100%, compare o valor da tensão superficial obtida com o valor da literatura γ_{etanol} (26° C) = 62 mN/m.

EXPERIMENTO 2b (OPCIONAL) - Efeito da concentração (etanol) na Tensão superficial

Após determinar o diâmetro do tubo que será utilizado para o gotejamento, preparar 5 soluções de etanol conforme a tabela abaixo, cada uma com 20 mL. Realizar o gotejamento das soluções em um béquer e medir a massa das gotas. OBS. Não esqueça de medir a massa do béquer antes para poder subtrair seu valor das medidas. Em seguida calcule a tensão superficial de cada uma das soluções. Considere o fator de correção f = 0.6. Usar a equação 4b para calcular γ.

Tubo	Solução	Massa de 40 gotas (em kg)		Tensão Superficial	
	(valores em volume)	med1.	med2.	média	γ (N/m)
#1	95% água + 5% etanol				
#2	70% água + 30% etanol				
#3	50% água + 50% etanol				
#4	30% água + 70% etanol				
#5	10% água + 90% etanol				

Faca um gráfico mostrando a concentração percentual do etanol em função da tensão superficial e a partir de um ajuste aos pontos experimentais determine o valor da tensão superficial de uma solução contendo 60% água e 40% etanol. Discuta seus resultados.

No gráfico, faça uma extrapolação dos pontos até uma concentração de etanol igual a 100%, compare o valor da tensão superficial obtida com o valor da literatura γ_{etanol} (26° C) = 22 mN/m.

EXPERIMENTO 3 – Efeito da temperatura na tensão superficial.

Após determinar o diâmetro do tubo que será utilizado para o gotejamento, preparar uma solução de glicerol contendo **50% água** + **50% glicerol**, com 20 mL. Realizar o gotejamento das soluções em um béquer em 5 temperaturas diferentes e medir a massa das gotas (utilizar 40 gotas).

Tenha cuidado ao manusear os equipamentos em altas temperaturas. Antes de realizar as medidas certifique-se que de fato o líquido dentro do tubo do gotejamento estará na temperatura desejada. Para isso você pode, por exemplo, encher e esvaziar o tubo com o liquido na temperatura desejada umas 3 vezes antes da medida, o que fará com que o tubo atinja uma temperatura próximo a do experimento. Alem disso, neste casso para minimizar a variação de temperatura, faça o gotejamento o mais rápido possível

OBS. Não esqueça de medir a massa do béquer antes para poder subtrair seu valor das medidas. Em seguida calcule a tensão superficial de cada uma das soluções. Considere o fator de correção f=0.6. Usar a equação 4b para calcular γ .

Solução de 50% água + 50% glicerol (valores em volume)

Tubo	Temperatura	Massa de 40 gotas (em kg)			Tensão Superficial
	(°C)	med1.	med2.	média	γ (N/m)
#1	0				
#2	20				
#3	40				
#4	60				
#5	80				

Faca um gráfico mostrando a variação da tensão superficial em função da temperatura. A partir de um ajuste aos pontos experimentais determine o valor da tensão superficial dessa solução nas temperaturas de 10° C e 70° C. Discuta seus resultados

EXPERIMENTO 4 – Efeito do diâmetro do tubo na tensão superficial.

Utilizando tubos com 3 diâmetros diferentes realizar o gotejamento de água destilada (40 gotas) em um béquer, em uma mesma temperatura, e analisar a variação da tensão superficial em função do diâmetro do tubo. OBS. Não esqueça de medir a massa do béquer antes para poder subtrair seu valor das medidas. Considere o fator de correção f=0.6. Determine o diâmetro dos tubos utilizando a equação 5. Como hipótese inicial para determinar o diâmetro dos tubos considere a tensão superficial das soluções igual a da água destilada. Usar a equação 4b para calcular γ .

Água destilada a temperatura ambiente

Tubo	Diâmetro (d=2r)	Massa de 40 gotas (em kg)			Tensão Superficial γ (N/m)	
	(m)	med1.	med2.	média	_	
#1						
#2						
#3						

Obs. A limpeza é essencial em medidas de tensão superficial. Pequenas quantidades de impurezas afetam bastante as propriedades superficiais. Portanto, limpe muito bem o material a ser usado antes e depois de cada experiência.

Construa um gráfico da tensão superficial em função do diâmetro do tubo contendo os dados deste experimento. Discutir o resultado obtido e os erros envolvidos no processo.

5) Questionário adicional para o relatório

- 1. Defina tensão superficial e tensão interfacial.
- 2. Descreva outros métodos para a medida de tensão superficial. Faça ilustrações.
- 3. Dê exemplos de substâncias que aumentem a tensão superficial da água
- 4. Como são constituídos e como se classificam os surfactantes e tensoativos? Dê exemplos
- 5. Desenhe uma estrutura para a micela?
- 6. Como agem os xampus e condicionadores?
- 7. Quais são os fatores que influenciam a tensão superficial? Explique cada fator.

6) Bibliografia e referências adicionais

- 1. Adamson A.W., 1982, **Physical Chemistry of Surfaces**, John Wiley & Sons, 4^a edição.
- 2. Shawn D.J., 1975, **Introdução a química dos colóides e de superfícies**, Editora Edgard Blucher, capítulo 4.
- 3. Ball D.W., 2005, **Físico-Química**, 1^a. ed., Vol. 1 e 2, Thomson Learning.
- 4. Rangel R.N., 2006, **Práticas de Físico-Química**, 3^a. ed., Edgard Blucher.
- 5. Atkins P. W., Paula J., 2004, **Físico-Química**, Vol. 1, 2 e 3, LTC.
- 6. Crockford H.D.; Knight S.B., 1977, **Fundamentos de Físico-Química**, Livros Técnicos e Científicos Editora.
- 7. Moore, J.W. **Físico-Química**, Vol.1 e 2, 4^a ed., Editora Edgard Blucher, 1976.
- 8. Gianino C., 2006, Physics Education, 41, 440, "Measurement of surface tension by the dripping from a needle"
- 9. http://www.fisica.ufs.br/CorpoDocente/egsantana/fluidos/tension/tate/tate.htm (com animação)
- 10. Roger P. Woodward, Surface Tension Measurements Using the Drop Shape Method www.firsttenangstroms.com/pdfdocs/STPaper.pdf