Dinâmica de um Sistema de Partículas

Faculdade de Engenharia, Arquiteturas e Urbanismo - FEAU

Profa. Dra. Diana Andrade Prof. Dr. Sergio Pilling

1ª Lista de exercícios

Parte 1 – Cinemática A) Sistema de unidades

1.

Quando, segundo a lenda, Feidípides correu de Maratona até Atenas, em 490 a.C., para levar a notícia da vitória dos gregos sobre os persas, ele provavelmente correu a uma velocidade de cerca de 23 rides por hora (rides/h). O ride é uma antiga unidade grega para comprimento, como o stadium e o plethron: 1 ride valia 4 stadia, 1 stadium valia 6 plethra e, em termos de uma unidade moderna, 1 plethron equivale a 30,8 m. Qual foi a velocidade de Feidípides em quilômetros por segundo (km/s)?

2.

(a) Supondo que a água tenha uma massa específica de exatamente 1 g/cm³, determine a massa de um metro cúbico de água em quilogramas. (b) Suponha que são necessárias 10,0 h para drenar um recipiente com 5700 m³ de água. Qual é a "vazão de massa" da água do recipiente, em quilogramas por segundo?

3.

Um antigo manuscrito revela que um proprietário de terras no tempo do rei Artur possuía 3,00 acres de terra cultivada e uma área para criação de gado de 25,0 perchas por 4,00 perchas. Qual era a área total (a) na antiga unidade de roods e (b) na unidade mais moderna de metros quadrados? 1 acre é uma área de 40 perchas por 4 perchas, 1 rood é uma área de 40 perchas por 1 percha, e 1 percha equivale a 16,5 pés.

4.

Um cubo de açúcar típico tem 1 cm de aresta. Qual é o valor da aresta de uma caixa cúbica com capacidade suficiente para conter um mol de cubos de açúcar? (Um mol = 6.02×10^{23} unidades.)

5.

Os degraus de uma escada têm 19 cm de altura e 23 cm de largura. As pesquisas mostram que a escada será mais segura na descida se a largura dos degraus for aumentada para 28 cm. Sabendo que a altura da escada é de 4,57 m, qual será o aumento da distância horizontal coberta pela escada se a modificação da largura dos degraus for executada?

6.

As dimensões das letras e espaços de um livro são expressas em termos de pontos e paicas: 12 pontos = 1 paica e 6 paicas = 1 polegada. Se em uma das provas do livro uma figura apareceu deslocada de 0,80 em relação à posição correta, qual foi o deslocamento (a) em paicas e (b) em pontos?

7.

A Terra tem a forma aproximada de uma esfera com 6,37 × 10⁶ m. Determine (a) a circunferência da Terra em quilômetros, (b) a área da superfície da Terra em quilômetros quadrados e (c) o volume da Terra em quilômetros cúbicos.

Parte 1 – Cinemática

B) Movimento em uma dimensão

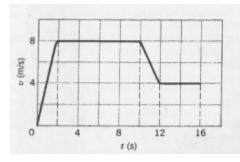
1.

Que distância seu carro percorre, a 88 km/h, durante 1 s em que você olha um acidente à margem da estrada?

2.

Um jogador de beisebol consegue lançar a bola com velocidade horizontal de 160 km/h, medida por um radar portátil. Em quanto tempo a bola atingirá o alvo, situado a 18,4 m?

3.


Um avião a jato pratica manobras para evitar detecção pelo radar e está 35 m acima do solo plano (veja fig. abaixo). Repentinamente ele encontra uma rampa levemente inclinada de 4,3°, o que é difícil de detetar. De que tempo dispõe o piloto para efetuar uma correção que evite um choque com o solo? A velocidade em relação ao ar é de 1.300 km/h.

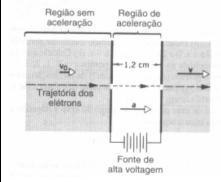
4.

Dois trens, cada um com a velocidade escalar de 34 km/h, aproximam-se um do outro na mesma linha. Um pássaro que pode voar a 58 km/h parte de um dos trens quando eles estão distantes 102 km e dirige-se diretamente ao outro. Ao alcançá-lo, o pássaro retorna diretamente para o primeiro trem e assim sucessivamente. (a) Quantas viagens o pássaro pode fazer de um trem ao outro antes de eles se chocarem? (b) Qual a distância total que o pássaro percorre?

5.

Que distância percorre em 16 s um corredor cujo gráfico velocidade-tempo é o da figura abaixo?

6.


Para decolar, um avião a jato necessita alcançar no final da pista a velocidade de 360 km/h. Supondo que a aceleração seja constante e a pista tenha 1,8 km, qual a aceleração mínima necessária, a partir do repouso?

7.

A cabeça de uma cascavel pode acelerar 50 m/s^2 ao atacar uma vítima. Se um carro pudesse fazer o mesmo, em quanto tempo ele alcançaria a velocidade escalar de 100 km/h a partir do repouso?

8.

Um elétron, com velocidade inicial $v_0 = 1.5 \times 10^5 \, \mathrm{m/s}$, entra numa região com 1,2 cm de comprimento, onde ele é eletricamente acelerado (veja Fig.). O elétron emerge com velocidade de $5.8 \times 10^6 \, \mathrm{m/s}$. Qual a sua aceleração, suposta constante? (Tal processo ocorre no canhão de elétrons de um tubo de raios catódicos, utilizado em receptores de televisão e terminais de vídeo.)

9.

A maior velocidade em terra já registrada foi de 1.020 km/h, alcançado pelo coronel John P. Stapp em 19 de março de 1954, tripulando um assento jato-propulsado. Ele e o veículo foram parados em 1,4 s:

Que aceleração ele experimentou? Exprima sua resposta em termos da aceleração da gravidade $g = 9.8 \text{ m/s}^2$. (Note que o corpo do militar atua como um acelerômetro, não como um velocímetro.)

10.

Um trem de metrô acelera a partir do repouso a 1,20 m/s² em uma estação para percorrer a primeira metade da distância até a estação seguinte e depois desacelera a –1,20 m/s² na segunda metade da distância de 1,10 km entre as estações. Determine: (a) o tempo de viagem entre as estações e (b) a velocidade escalar máxima do trem.

11.

No momento em que a luz de um semáforo fica verde, um automóvel arranca com aceleração de 2.2 m/s^2 . No mesmo instante um caminhão, movendo-se à velocidade constante de 9.5 m/s, alcança e ultrapassa o automóvel. (a) A que distância, além do ponto de partida, o automóvel alcança o caminhão? (b) Qual será a velocidade do carro nesse instante? (É instrutivo desenhar um gráfico qualitativo de x(t) para cada veículo.).

12.

No manual de motorista diz que um automóvel com bons freios e movendo-se a 80 km/h pode parar na distância de 56 m. Para a velocidade de 48 km/h a distância correspondente é 24 m.Suponha que sejam iguais, nas duas velocidades, tanto o tempo de reação do motorista, durante o qual a aceleração é nula, como a aceleração quando aplicados os freios. Calcule (a) o tempo de reação do motorista e (b) a aceleração.

13.

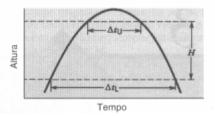
Uma rocha despenca de um penhasco de 100 m de altura. Quanto tempo leva para cair (a) os primeiros 50 m e (b) os 50 m restantes?

14.

Um jogador de basquete, no momento de "enterrar" a bola, salta 76 cm verticalmente. Que tempo passa o jogador (a) nos 15 cm mais altos do pulo e (b) nos 15 cm mais baixos? Isso explica por que esses jogadores parecem suspensos no ar no topo de seus pulos.

15.

O laboratório de pesquisa da gravidade nula do Centro de Pesquisa Lewis da NASA (EUA) tem uma torre de queda de 145 m. Trata-se de um dispositivo vertical onde se fez vácuo e que, entre outras possibilidades, permite estudar a queda de uma esfera com diâmetro de 1 m, que contém equipamentos. (a) Qual o tempo de queda do equipamento? Qual sua velocidade ao pé da torre? (c) Ao pé da torre a esfera tem uma aceleração média de 25 g quando sua velocidade é reduzida a zero. Que distância ela percorre até parar?


16.

Um balão está subindo a 12,4 m/s à altura de 81,3 m acima do solo quando larga um pacote. (a) Qual a velocidade do pacote ao atingir o solo? (b) Quanto tempo ele leva para chegar ao solo?

17.

No Laboratório Nacional de Física da Inglaterra (o equivalente ao nosso Instituto Nacional de Pesos e Medidas) foi realizada uma medição de g atirando verticalmente para cima uma bola de vidro em um tubo sem ar e deixando-a retornar. A figura é o gráfico da altura da bola em função do tempo. Seja Δt_L o intervalo de tempo entre duas passagens consecutivas da bola pelo nível inferior, Δt_U o intervalo de tempo entre duas passagens consecutivas pelo nível superior e H a distância entre os dois níveis. Prove que

$$g = \frac{8H}{\Delta t_L^2 - \Delta t_U^2}.$$

18.

Um cachorro avista um pote de flores passar subindo e a seguir descendo por uma janela com 1,1 m de altura. O tempo total durante o qual o pote é visto é de 0,74 s. Determine a altura alcançada pelo pote acima do topo da janela.

Parte 1 – Cinemática C) Vetores

1.

Uma estação de radar detecta um avião que vem do Leste. No momento em que é observado pela primeira vez, o avião está a 400 m de distância, 40° acima do horizonte, O avião é acompanhado por mais 123° no plano vertical Leste-Oeste e está a 860 m de distância quando é observado pela última vez. Calcule o deslocamento da aeronave durante o período de observação.

2

Uma partícula se move ao longo de um plano XY e seu movimento é definido pelas equações x=4t⁴-6t e y=6t³-2t² (m, s). a) Determine o vetor posição da partícula em relação ao centro de coordenadas. B) Determine o vetor velocidade e o vetor aceleração. C) Calcule o modulo da velocidade e da aceleração da paricula nos instantes t=1s, t=2s e t=4s.

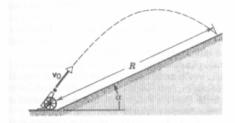
3.

O movimento de uma dada partícula é definido pelo vetor posição $\vec{r} = A(\cos t + t \sin t)\hat{i} + A(\sin t - t \cos t)\hat{j}$, no qual t e expresso em segundos. Determine os valores de t para os quais os vetores posição e de aceleração são: a) perpendiculares e b) paralelos.

Dica: para determinar se vetores são paralelos ou perpendiculares entre si estudar os produtos escalares e vetoriais entre eles.

4.

A posição de uma partícula que se move em um plano xy é dada por $\mathbf{r} = (2t^3 - 5t)\mathbf{i} + (6 - 7t^4)\mathbf{j}$, com r em metros e t em segundos. Calcule (a) \mathbf{r} , (b) \mathbf{v} e (c) \mathbf{a} quando t = 2 s.


Parte 1 – Cinemática

D) Movimento em uma duas e três dimensões

1. Uma bola é jogada do solo para o ar. A uma altura de 9.1 m a velocidade é v = 7.6 i+6.1 j em metros por segundo (i horizontal, j vertical). (a) Qual a altura máxima alcançada pela bola? (b) Qual será a distância horizontal alcançada pela bola? (c) Qual a velocidade da bola (módulo e direção), no instante em que bate no solo?

2.

Um canhão é posicionado para atirar projéteis com velocidade inicial v_0 diretamente acima de uma elevação de ângulo α , como mostrado na Fig. Que ângulo o canhão deve fazer com a horizontal de forma a ter o alcance máximo possível acima da elevação?

3.

Uma criança gira uma pedra em um círculo horizontal a 1,9 m acima do chão, por meio de uma corda de 1,4 m de comprimento. A corda arrebenta e a pedra sai horizontalmente, caindo no chão a 11 m de distância. Qual era a aceleração centrípeta enquanto estava em movimento circular?

4

A neve está caindo verticalmente à velocidade escalar constante de 7,8 m/s. (a) A que ângulo com a vertical e (b)com qual velocidade os flocos de neve parecem estar caindo para o motorista de um carro que viaja numa estrada reta à velocidade escalar de 55 km/h?

5.

Um trem viaja para o Sul a 28 m/s (relativamente ao chão), sob uma chuva que está sendo soprada para o sul pelo vento. A trajetória de cada gota de chuva faz um ângulo de 64º com a vertical, medida por um observador parado em relação à Terra. Um observador no trem, entretanto, observa traços perfeitamente verticais das gotas na janela do trem. Determine a velocidade das gotas em relação à Terra.

6.

Um homem quer atravessar um rio de 500 m de largura. A velocidade escalar com que consegue remar (relativamente à água) é de 3,0 km/h. O rio desce à velocidade de 2,0 km/h. A velocidade com que o homem caminha em terra é de 5,0 km/h. (a) Ache o trajeto (combinando andar e remar) que ele deve tomar para chegar ao ponto diretamente oposto ao seu ponto de partida no menor tempo. (b) Quanto tempo ele gasta?

7.

Um navio de guerra navega para leste a 24 km/h. Um submarino a 4,0 km de distância atira um torpedo que tem a velocidade escalar de 50 km/h. Se a posição do navio, visto do submarino, está 20° a nordeste (a) em qual direção o torpedo deve ser lançado para acertar o navio, e (b) que tempo decorrerá até o torpedo alcançar o navio?