Luciano Grande Guiotti

Orientador: Prof. Dr. Liu Yao Cho

Dissertação (Mestrado em Materiais)

Universidade do Vale do Paraíba Instituto de Pesquisa e Desenvolvimento Programa de Pós-Graduação em Processamento de Materiais

- ✓ Introdução
- ✓ Objetivo
- Materiais e Métodos
- ✓ Resultados e Discussão
- ✓ Conclusões

✓ Introdução

- Objetivo
- Materiais e Métodos
- Resultados e Discussão
- Conclusões

Aço Carbono [1]

- Ferro é o elemento predominante
- Teor de carbono < 2%
- Outros elementos presentes: Mn,
 P, S
- Designado conforme composição química [2]

Tabela 1: Designação de aços carbono

Designação	Composição Química						
do aço	Carbono (%)	Manganês (%)	Fósforo máximo (%)	Enxofre máximo (%)			
1010	0,08 - 0,13	0,30 - 0,60	0,04	0,05			
1015	0,13 - 0,18	0,30 - 0,60	0,04	0,05			
1020	0,18 - 0,23	0,30 - 0,60	0,04	0,05			
1025	0,22 - 0,28	0,30 - 0,60	0,04	0,05			
1030	0,28 - 0,34	0,30 - 0,60	0,04	0,05			
1035	0,32 - 0,38	0,60 - 0,90	0,04	0,05			
1040	0,37 - 0,44	0,60 - 0,90	0,04	0,05			
1045	0,43 - 0,50	0,60 - 0,90	0,04	0,05			
1050	0,48 - 0,55	0,60 - 0,90	0,04	0,05			
1055	0,50 - 0,60	0,60 - 0,90	0,04	0,05			
1060	0,55 - 0,65	0,60 - 0,90	0,04	0,05			

Fonte: ABNT (2000b)

- Material amplamente utilizado na indústria [3]
 - Boas propriedades mecânicas
 - Baixo custo
 - Metal base da indústria de refino de petróleo [4]
 - Baixa resistência à corrosão

Corrosão

Deterioração de um material por ação química ou eletroquímica do meio ambiente aliada ou não a esforços mecânicos [5] Reação anódica:
 ✓ Oxidação do metal
 M → Mⁿ⁺ + ne⁻

 Reação catódica:
 ✓ Evolução de hidrogênio (meios ácidos) 2H⁺ + 2e⁻ → H₂
 ✓ Redução de oxigênio (soluções ácidas) O₂ + 2H⁺ + 4e⁻ → 2OH⁻
 ✓ Redução de oxigênio (soluções neutras ou básicas) O₂ + 2H₂O + 4e⁻ → 4OH⁻

Figura 1: Esquema de processo corrosivo de aço carbono em água com presença de ar (oxigênio).

Fonte: Deshpande et al. (2014)

Impactos da Corrosão

- Custos da ordem de 3,5% do PNB [5]
 - Brasil: US\$ 15 bi/ano

- Distribuição dos custos de corrosão na indústria de óleo e gás [4]:
 - 54% refino
 - 25% petroquímica
 - 21% exploração

Formas de Proteção contra Corrosão [5]

Modificação do

ambiente corrosivo

- adição de inibidores de corrosão
 - desaeração do fluido
- remoção de umidade

Modificação do metal

- adição de elementos de liga
 - aumento da pureza

Modificação da interface

metal – meio corrosivo

- revestimentos inorgânicos
 - (esmaltes, cimento)
- revestimentos metálicos
- revestimentos orgânicos

(tintas, resinas, polímeros)

Polímeros Condutores

Aplicação na proteção contra

corrosão de metais

Principais Polímeros Condutores

	rabela 2. Finicipais pointeros condutores					
Polímero Condutor	Estrutura Química - forma neutra	Condutividade elétrica - forma dopada (S.cm ⁻¹)				
Polianilina (PAni)	(NH) NH)	10 – 10 ³				
Polipirrol (PPy)		10 ² - 10 ³				
Politiofeno (PTh)	(s s s)	10 ²				
Policarbazol (PCz)	(NH NH NH NH NH NH NH NH NH NH NH NH NH	10-4				

Tabela 2: Principais polímeros condutores

Características dos Polímeros Condutores

- Boa condutividade elétrica
- Leveza
- Flexibilidade
- Facilidade de síntese

Tabela 3 Condutividade elétrica de materiais						
Material	rial Condutividade elétrica (S cm ⁻¹)					
Prata	6,8.10 ⁵	+ condutor				
Cobre	6,0.10 ⁵	T				
Ferro	1,0.10 ⁵					
Aço carbono	0,6.10 ⁵					
Polianilina	10 - 10 ³					
Polipirrol	10 ² - 10 ³					
Politiofeno	10 ²					
Germânio	2,2.10 ⁻²					
Policarbazol	10-4					
Silício	4.10 ⁻⁶					
Óxido de alumínio	<10 ⁻¹⁵					
Poliestireno	<10 ⁻¹⁶					
Polietileno	10 ⁻¹⁷ - 10 ⁻¹⁹	+ isolante				

Fonte: Deshpande e Sazou (2016) e Callister e Rethwisch (2012)

Estrutura molecular justifica a boa condutividade

Figura 2: Esquema da formação das ligações $\sigma \in \pi$ através de dois átomos de carbono com hidridização sp².

- Cadeia conjugada
- Hibridização sp²
- Elétrons desemparelhados e deslocalizados ao longo da cadeia

...associado com o processo de dopagem

Mecanismo de exposição do polímero

a agentes oxidantes ou redutores

- Processo reversível
- Íon utilizado na dopagem altera significativamente as propriedades do material

Fonte: Deshpande e Sazou (2016)

Aplicações de Polímeros Condutores

- Baterias [10]
- Biosensores [11]
- Dispositivos eletrocromáticos [12]
- Blindagem eletromagnética [13]
- Liberação de Fármacos [14]
- Músculos artificiais [15]
- Eletrocatálise [16]
- Revestimentos anticorrosivos

Aplicação na Proteção contra Corrosão

- Trabalho pioneiro: DeBerry, 1985 [17]
- Série de revisões bibliográficas sobre a aplicação [6-7,18-20]
- Vantagens ambientais em relação aos revestimentos tradicionais
- Aplicação como revestimento anticorrosivo para diferentes metais
 - Aço carbono [21-26]
 - Aço inoxidável [27-30]
 - Ligas de alumínio [31-35], cobre [36-37], chumbo [38]
- Desempenho depende das condições de síntese [39]

Síntese do PPy

Mecanismos de reação

Rotas de Síntese

Condições de Síntese

Mecanismo de Reação de Polimerização

• Acoplamento de cátions radicais [40,41]

Figura 4: Mecanismo de reação da polimerização do polipirrol

+

- Eletroquímica
 - Aplicação de potencial / corrente elétrica
 - Maior controle
 - Mais comumente utilizado em aplicações na área de revestimentos anticorrosivos
- Química
 - Uso de agente oxidante
 - Maior escala

Condições de Síntese

- Densidade de corrente aplicada e tempo de reação [19,21,22,26]
- Temperatura e pH [22]
- Concentrações monômero e dopante [18,19,23,26,27,29,42]
- Tipo de solvente
- Tipo de dopante

Influência do Solvente

 Solvente deve ser estável e não reagir com as outras substâncias envolvidas na síntese [43]

Solvente Orgânico

- ✓ Utilização menos comum [28]
- Permite o uso de dopantes imiscíveis em água
- ✓ A depender do solvente, pode ser menos nucleofílico do que a água, formando revestimentos mais uniformes → melhor proteção anticorrosiva [30,42]

Solvente Aquoso

- ✓ Mais comumente utilizado
- ✓ Menor custo
- ✓ Menor efluente

Influência do Solvente

Solvente não deve ser corrosivo ao

metal

 Cuidado particularmente importante para metais oxidáveis, tal como o aço carbono

Г	Δ	2	1
Ļ	-		Ь,

	solvente	es
Solvente	Potencial de corrosão,	Densidade de corrente de corrosão, j _{corr}
	Ecorr (V)	(mA.cm ⁻²)
gua Destilada	-0,619	0,0012
Água MiliQ	-0,619	0,0008
Etanol	-0,141	0,0002
Acetonitrila	-0,255	0,0001

Influência do Dopante

- Pode alterar significativamente as características e propriedades de um revestimento [39]
- O tamanho da molécula do dopante influencia o desempenho anticorrosivo do revestimento
 - Moléculas grandes: alteram a permeseletividade dos revestimentos de aniônico para catiônico, o que tem aumentado o desempenho da proteção contra corrosão de metais [18,29]

- Moléculas pequenas: atuam na passivação da superfície do metal [18]
- Uso de revestimento com dopagem dupla [25,37,44]

Introdução

✓ Objetivo

- Materiais e Métodos
- Resultados e Discussão
- Conclusões

 Sintetizar, em superfície de aço carbono, o polímero condutor polipirrol (PPy) pelo método eletroquímico em solvente orgânico acetonitrila utilizando diferentes dopantes e avaliar seu comportamento anticorrosivo.

✓ Introdução✓ Objetivo

Materiais e Métodos

Resultados e Discussão

Materiais e Métodos

Pré-tratamento das amostras do substrato metálico Deposição eletroquímica de PPy em acetonitrila com dopantes selecionados Estudo dos parâmetros eletroquímicos dos revestimentos obtidos

Caracterização morfológica e química do revestimentos obtidos

Pré-tratamento do substrato metálico

- Material: aço carbono 1020 no formato de discos de 2,0 cm de diâmetro e 0,2 cm de espessura
- Polimento com lixas granulométricas com mesh 80, 320, 800 e 1200
- Lavagem com água encanada e água destilada, seguido de desengraxe com acetona
- Secagem em condições ambiente por 1 hora

Figura 7: Etapas de deposição eletroquímica

- Preparação do meio reacional:
 - Volume reacional de 25 mL
 - Temperatura ambiente
 - Concentração do monômero pirrol (Py): 0,20 mol.L⁻¹
 - Solvente acetonitrila
 - Dopantes selecionados

Dopantes

- Ác. inorgânicos: PO, Mo
- Ác. aromático de cadeia longa: DBSA
- Ác. aromático cadeia curta: SA
- Ác. alifático cadeia longa: LA
- Ác. dicarboxílico cadeia curta: OA
- Ác. dicarboxílico cadeia curta com grupo funcional hidroxila: TA

	Tabela 5: Dopantes utilizados						
Símbolo	Nome	Fórmula Molecular	Fórmula Estrutural	Massa Molecular (g.mol ⁻¹)	Marca		
PO	Ácido fosfórico	H ₃ PO ₄	H-O-H	97,994	Carlo Erba		
Мо	Ácido molíbdico	MoO₃·H₂O	H NO H	161,95	Neon		
DBSA	Ácido dodecilbenzo sulfônico	C ₁₈ H ₃₀ O ₃ S	Hyc () 11	355,480	Sigma- Aldrich		
SA	Ácido salicílico	$C_7H_6O_3$	он	138,121	Sigma- Aldrich		
LA	Ácido láurico	$C_{12}H_{24}O_2$	H ₃ C - H	200,3178	Eastman Kodak		
OA	Ácido oxálico dihidratado	$C_2H_2O_4\cdot 2H_2O$	HO UH · 2H ₂ O	126,037	Fischer		
ТА	Ácido tartárico	C4H6O6	но он он о он	150,087	Reagen		

- Célula eletroquímica
 - Célula de três eletrodos
 - Potenciostato / galvanostato da marca Metrohm Autolab, modelo AUT95353, conectado ao software Nova 2.1.3
 - Aplicação de corrente controlada (galvanostática) por 3600 segundos por camada

Figura 8: Célula de três eletrodos para deposição eletroquímica

• Revestimentos de camada única

Tabela 6: Condições de síntese para revestimento de camada única

	Parâmetros da Deposição Eletroquímica				
Amostra	Monômero	Dopante	Densidade de corrente aplicada (mA.cm ⁻²)		
PPy	Pirrol (Py) 0,20 mol.L ⁻¹	Nenhum	0,67		
PPy-PO	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido fosfórico (PO) 0,20 mol.L ⁻¹	0,67		
PPy-Mo	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido molíbdico (Mo) 0,20 mol.L ⁻¹	0,67		
PPy-DBSA	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido dodecilbenzo sulfônico (DBSA) 0,05 mol.L ⁻¹	1,33		
PPy-SA	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido salicílico (SA) 0,20 mol.L ⁻¹	0,67		
PPy-LA	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido láurico (LA) 0,20 mol.L ⁻¹	0,67		
PPy-OA	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido oxálico (OA) 0,20 mol.L ⁻¹	0,67		
PPy-TA	Pirrol (Py) 0,20 mol.L ⁻¹	Ácido tartárico (TA) 0,05 mol.L ⁻¹	0,67		

• Revestimentos de camada dupla

	3			•		
	Parâmetros da Deposição Eletroquímica					
-	Camad	la interna	Camada	externa		
Amostra	Dopante	Densidade de corrente aplicada (mA.cm ⁻²)	Dopante	Densidade de corrente aplicada (mA.cm ⁻²)		
PPy-PO PPy- DBSA	Ácido fosfórico (PO) 0,20 mol.L ⁻¹	0,67	Ácido dodecilbenzo sulfônico (DBSA) 0,05 mol.L ⁻¹	1,33		
PPy-PO PPy-SA	Ácido fosfórico (PO) 0,20 mol.L ⁻¹	0,67	Ácido salicílico (SA) 0,20 mol.L ⁻¹	0,67		
PPy-PO PPy-LA	Ácido fosfórico (PO) 0,20 mol.L ⁻¹	0,67	Ácido láurico (LA) 0,20 mol.L ⁻¹	0,67		
PPy-POJPPy- OA	Ácido fosfórico (PO) 0,20 mol.L ⁻¹	0,67	Ácido oxálico (OA) 0,20 mol.L ⁻¹	0,67		
ΡΡγ-ΡΟ ΡΡγ-ΤΑ	Ácido fosfórico (PO) 0,20 mol.L ⁻¹	0,67	Ácido tartárico (TA) 0,05 mol.L ⁻¹	0,67		

Tabela 7: Condições de síntese para revestimento de camada dupla

Caracterização Morfológica e Química

- MEV (Microscopia Eletrônica de Varredura)
 - Equipamento da marca Zeiss, modelo EVO MA 10
- EDX (Espectroscopia por espalhamento de energia dispersiva de raios X)
 - Equipamento da INCA Oxford Instruments
- FTIR (Espectroscopia de Infravermelho)
 - Para revestimentos de camada dupla
 - Espectrofotômetro modelo Spectrum 400 da PERKIN ELMER, com range de 4000 a 450 cm⁻¹

Estudos Eletroquímicos

- Célula de três eletrodos
- Potenciostato / galvanostato da marca Metrohm Autolab, modelo AUT95353, conectado ao software Nova 2.1.3
- Meio corrosivo: NaCl 0,1 mol.L⁻¹
- Meio referência: NaCl 0,1 mol.L⁻¹ + 100 mg.L⁻¹
 inibidor corrosão comercial

Meio corrosivo Área exposta

Ensaios Eletroquímicos

- Potencial de circuito aberto (OCP):
 - 2 horas
- Polarização potenciodinâmica:
 - Janela de potencial: -1,0 a +1,0 V
 - Velocidade de varredura de 1 mV.s⁻¹
 - Curvas de Tafel → Ecorr, jcorr
- Espectroscopia de impedância eletroquímica (EIS):
 - Para revestimentos de camada dupla
 - Amplitude de 10 mV, faixa de frequência de 10⁵ Hz a 2.10⁻³ Hz, tempos de imersão de 8, 24 e 48 h
 - Curvas de Nyquist → parâmetros eletroquímicos ajustados em software EC-LAB v10.40 em função do circuito equivalente

Introdução
 Objetivo
 Materiais e Métodos
 Resultados e Discussão

Caracterização do Aço Carbono

Figura 9: Amostra de aço carbono

Fonte: O autor

✓ Superfície homogênea

 Composição elementar compatível com o aço carbono 1020 2 μm H MMM 1. 2228 Mag + 200.23 Ma Mag + 200.23 Ma (a) (b)

Fonte: O autor

Tabela 8: EDX amostra de aço carbono Elemento Químico С Fe Mn Ρ s Si AI %, base mássica 0,19 99,15 0,01 0,00 0,13 0,06 0,46 Fonte: O autor

Figura 10: MEV da superfície da amostra de aço carbono após pré-tratamento

Parâmetros Eletroquímicos do Aço Carbono

Figura 10: OCP amostras aço carbono sem revestimento

Tabela 9: Parâmetros eletroc	uímicos de amostras de a	co carbono sem revestimento
		· · · · · · · · · · · · · · · · · · ·

Amostra	Potencial de corrosão, <i>E</i> _{corr} (V)	Densidade de corrente de corrosão, <i>j</i> _{corr} (mA.cm ⁻²)
AC	-0,651	0,0295
AC-INIB	-0,646	0,0069

Síntese dos Revestimentos de Camada Única

Figura 11: Curva potencial vs tempo da síntese eletroquímica dos revestimentos de camada única

Figura 12: Aspecto visual dos revestimentos de camada única. a) PPy, b) PPy-PO, c) PPy-Mo, d) PPy-DBSA, e) PPy-SA, f) PPy-LA, g) PPy-OA, h) PPy-TA

Caracterização dos Revestimentos de Camada Única

Parâmetros Eletroquímicos dos Revestimentos de Camada Única

Figura 14 OCP dos revestimentos de camada única

Amostra	Potencial de corrosão, <i>E_{corr}</i> (V)	Densidade de corrente de corrosão, <i>j_{corr}</i> (mA.cm ⁻²)		
AC	-0,651	0,0295		
AC-INIB	-0,646	0,0069		
PPy	-0,790	0,0183		
PPy-PO	-0,634	0,0284		
PPy-Mo	-0,675	0,0155		
PPy-DBSA	-0,727	0,0250		
PPy-SA	-0,834	0,0100		
PPy-LA	-0,658	0,0160		
PPy-OA	-0,673	0,0163		
PPy-TA	-0,443	0,0009		

Fonte: O autor

Figura 15: Curvas de Tafel dos revestimentos de camada única

- OCP: PPy-TA > PPy-OA > PPy-Mo > PPy-PO > PPy-LA > AC-INIB > AC > PPy > PPy-DBSA > PPy-SA
 - ✓ PPy-PO: maior potencial inicial
- E_{corr} : PPy-TA > PPy-PO > AC-INIB > AC > PPy-LA > PPy-OA > PPy-Mo > PPy-DBSA > PPy > PPy-SA
 - Tafel: curvas estáveis ✓ Exceção PPy-TA: perda de proteção / formação de pite
- PO como dopante da camada interna de revestimentos de camada dupla

j_{corr}: PPy-TA < <mark>AC-INIB</mark> < PPy-SA < PPy-Mo < PPy-LA < PPy-OA < PPy < PPy-DBSA < PPy-PO < <mark>AC</mark>

Caracterização dos Revestimentos de Camada Única após Polarização

PPy-SA

PPy-LA

PPy-OA

PPy-TA

Figura 16: MEV dos revestimentos de camada única após polarização potenciodinâmica

PPy

PPy-PO

PPy-Mo

PPy-DBSA

 \checkmark

- Evidenciado existência de trincas nos revestimentos após polarização
- PPy-Mo e PPy-TA: maiores e mais abertas
- \checkmark PPy-PO e PPy-SA: tamanho intermediário e numerosas
- \checkmark PPy-DBSA, PPy-OA, PPy-LA (principalmente): menores e menos numerosas

Síntese dos Revestimentos de Camada Dupla

Caracterização dos Revestimentos de **Camada Dupla**

PPv-POIPPv-DBSA

PPy-PO|PPy-SA

PPy-PO/PPy-LA

PPy-PO/PPy-OA

PPy-PO|PPy-TA

Fonte: O autor

Tabela 12: EDX dos revestimentos de camada dupla

Amostra	С	Ν	0	Fe	Mn	Р	S
PPy-PO PPy-DBSA	70,90		18,93	1,48		0,64	8,06
PPy-PO PPy-SA	68,70		22,93	0,51		5,88	0,39
PPy-POPPy-LA	53,99	6,73	26,98	2,96		9,34	
PPy-PO PPy-OA	67,50	3,32	22,49	1,47		5,22	
PPy-POPPy-TA	69,07		21,03	1,85		8,05	

Fonte: O autor

✓ Superfícies mais homogêneas que os de camada única, formato "couve-flor"

✓ atribuído à intercalação do dopante na cadeia polimérica [45]

✓ PPy-PO|PPy-DBSA: micro esferas agrupadas em estruturas globulares de até 100 µm.

✓ PPy-PO|PPy-SA: micro esferas pequenas (3 μ m)

✓ PPy-PO|PPy-LA: micro esferas de tamanho intermediário (6 μm)

✓ PPy-PO|PPy-OA: micro esferas de tamanho intermediário (6 µm) dispostas em camadas sobrepostas

✓ PPy-PO|PPy-TA: esferas de pequeno tamanho (4 μ m), com espaços vazios

✓ Menor teor de Fe (em relação às camadas únicas), presença de P (dopagem PO) e S (dopagem DBSA)

Caracterização dos Revestimentos de Camada Dupla

Tabela 13: Atribuições no espectro de FTIR para o revestimento de polipirrol sem dopagem (PPy).

Comprimento de onda (cm ⁻¹)	Atribuição	Referência
1522 (forte)	Estiramento C=C anel pirrólico	[42,46]
1400-1250 (fraca)	Vibração de estiramento anel pirrólico	[42]
1166 (forte)	Vibração C-H (PPy oxidado)	[42]
1039 (forte e estreita)	Deformação N-H no plano	[42,46]
923 (forte) e 780 (médio)	Deformação C-H fora do plano	[42]

Fonte: O autor

Tabela 14: Atribuições no espectro de FTIR para os revestimentos de camada dupla.

Revestimento	Dopante	Comp. onda (cm ⁻¹)	Atribuição	Referência
		3000-2840	Estiramento C-H sp ³	[47]
		1600-1450	Estiramento C=C anel aromático	[47]
	DBSA	1350	[47]	
FFY-DD3A		1150	Estiramento simétrico S=O	[47]
	PO	960	Vibração P-O	[38]
PPy-PO	SA	1600-1450	Estiramento C=C anel aromático	[47]
PPy-SA	PO	960	Vibração P-O	[48]
PPy-PO	LA	3000-2840	Estiramento C-H sp ³	[47]
PPy-LA	PO	960	Vibração P-O	[48]
PPy-PO	OA	1607	Estiramento C=O	[47]
PPy-OA	PO	960	Vibração P-O	[48]
PPy-PO	TA	3400-2400	Estiramento O-H	[47]
PPy-TA	PO	960	Vibração P-O	[48]

Fonte: O autor

Figura 20: OCP dos revestimentos de camada dupla

Tabela 15: Parâmetros eletroquímicos dos revestimentos de camada dupla

Amostra AC AC-INIB PPyPO PPy-DBSA PPyPO PPy-SA PPyPO PPy-LA PPyPO PPy-OA PPyPO PPy-TA	Potencial de	Densidade de corrente de
Amostra	corrosão,	corrosão, j _{corr}
	Ecorr (V)	(mA.cm⁻²)
AC	-0,651	0,0295
AC-INIB	-0,646	0,0069
PPyPO PPy-DBSA	-0,487	0,0447
PPyPO PPy-SA	-0,370	0,0696
PPyPO PPy-LA	-0,605	0,0100
PPyPO PPy-OA	-0,575	0,0166
PPyPO PPy-TA	-0,590	0,0102
		Fonte: O autor

Figura 21: Curvas de Tafel dos revestimentos de camada dupla

OCP: PPy-PO|PPy-SA > PPy-PO|PPy-DBSA > PPy-PO|PPy-OA > PPy-PO|PPy-LA > PPy-PO|PPy-TA > AC-INIB > AC

- *E_{corr}*: PPy-PO|PPy-SA > PPy-PO|PPy-DBSA > PPy-PO|PPy-OA > PPy-PO|PPy-TA > PPy-PO|PPy-LA > AC-INIB > AC
- Tafel: curvas estáveis e deslocadas para menores correntes no ramo anódico em relação à amostra AC

Exceção PPy-PO|PPy-TA

j_{corr}: AC-INIB< PPy-PO|PPy-LA < PPy-PO|PPy-TA < PPy-PO|PPy-AO < AC < PPy-PO|PPy-DBSA < PPy-PO|PPy-SA

Caracterização dos Revestimentos de Camada Dupla após Polarização

Figura 26: MEV dos revestimentos de camada dupla após polarização potenciodinâmica

PPy-PO|PPy-DBSA

PPy-PO|PPy-LA

2 um Fonte: O autor

- PPy-PO|PPy-SA e PPy-PO|PPy-TA: revestimentos se desprenderam do substrato metálico ao serem submetidos ao MEV
- Não evidenciado existência de trincas nos revestimentos após polarização, diferente dos revestimentos de camada única

PPy-PO|PPy-OA

Parâmetros Eletroquímicos (EIS) do Aço Carbono

Fonte: O autor

AC-INIB

8 h - experimental

- 8 h - ajustado

4 h - experimental

Um único semicírculo Característico de circuito RC \checkmark CPE x C \rightarrow não-idealidade [24]

Fonte: O autor

Figura 29: Curvas de Nyquist para revestimentos de camada dupla

Ζ' (Ω)

900 -

800 -

700 -

600 -

500

400 -

300 -

200 -

100

<u>C</u>

Ň

PPy-PO/PPy-SA

8 h - experimental

- 8 h - ajustado

▲ 24 h - experimenta 24 h - ajustado

 48 h - experimenta 48 h - aiustad

Fonte: O autor

Z' (Ω)

- Dois semicírculos
- Dois sistemas RC
- Alta frequência [24]:

eletrólito / revestimento

Baixa frequência [24]:

revestimento / metal

Figura 30: Circuito equivalente para revestimentos de camada dupla

Tabela 16: Parâmetros eletroquímicos ajustados a partir dos circuitos equivalentes.

_	Tempo	Rc -	CPE	;	Ret	CPEDL		Rp	
Amostra	de imersão	(Ω)	Y ₀ (F.s ⁿ⁻¹)	α	(Ω)	Y ₀ (F.s ⁿ⁻¹)	α	(Ω)	3
	8h	-	-	-	1046	6,26.10 ⁻⁴	0,80	1046	-
AC	24h	-	-	-	970	6,49.10 ⁻⁴	0,78	970	-
	48h	-	-	-	969	7,69.10 ⁻⁴	0,77	969	-
	8h	-	-	-	1062	3,66.10 ⁻⁴	0,76	1062	2%
AC-INIB	24h	-	-	-	1234	3,36.10 ⁻⁴	0,76	1234	21%
	48h		-	-	1400	3,01.10 ⁻⁴	0,76	1400	31%
	8h	27	7,84.10 ⁻³	0,62	1578	4,81.10 ⁻²	0,86	1605	35%
PPY-PO	24h	147	5,67.10 ⁻³	0,46	3529	5,10.10 ⁻²	0,85	3676	74%
PPT-DDSA	48h	225	4,17.10 ⁻³	0,45	5284	5,52.10 ⁻²	0,88	5509	82%
	8h	598	2,95.10 ⁻³	0,33	446	1,78.10 ⁻¹	1,00	1044	-
PPY-PO	24h	336	4,16.10 ⁻⁴	0,40	2511	1,40.10 ⁻³	0,56	2847	66%
FFT-SA	48h	402	9,26.10 ⁻⁴	0,45	3459	1,65.10 ⁻³	0,62	3861	75%
	8h	563	3,61.10 ⁻⁴	0,55	467	4,98.10 ⁻²	0,84	1030	-
PPY-PO	24h	1164	B,12.10 ⁻⁴	0,64	693	6,87.10 ⁻²	0,87	1857	48%
PPT-LA	48h	1690	8,60.10 ⁻⁴	0,63	685	1,35.10 ⁻¹	0,90	2375	59%
	8h	392	3,38.10 ⁻⁴	0,68	370	8,34.10 ⁻²	0,99	762	-
PPY-PO	24h	674	3,39.10 ⁻⁴	0,77	351	1,39.10 ⁻¹	1,00	1025	5%
FFT-UA	48h	1128	B,29.10 ⁻⁴	0,77	298	5,51.10 ⁻²	0,66	1426	32%
	8h	469	3,71.10 ⁻⁴	0,67	470	4,38.10 ⁻²	0,82	939	-
PPY-PO PPY-TA	24h	1141	2,62.10 ⁻⁴	0,80	563	1,48.10 ⁻¹	1,00	1704	43%
FF1-IA	48h	1452	2,82.10-4	0,80	187	1,48.10 ⁻¹	1,00	1639	41%

AC

↓R_{CT} ↑tempo

 Formação de um filme instável e não denso na superfície do aço associado à perda gradual dos produtos de corrosão [24,49-50]

AC-INIB

1R_{CT} 1tempo

Indicativo de proteção contra corrosão

Revestimentos Camada Dupla

1R_c 1tempo

- Obstrução gradual dos poros do revestimento com os produtos do processo corrosivo
- Avanço do processo de redução do filme polimérico [49]
- ✓ Exceção PPy-PO|PPy-SA:
 - elevados potenciais durante síntese
 - sobreoxidação
 - redução de suas propriedades redox [51]

Tabela 16: Parâmetros eletroquímicos ajustados a partir dos circuitos equivalentes.

_	Tempo	Re	CPEc	;	Ret	CPEDL		Ro	
Amostra	de imersão	(Ω)	Y ₀ (F.s ⁿ⁻¹)	α	α (Ω)	Y ₀ (F.s ⁿ⁻¹)	α	(Ω)	3
	8h	-	-	-	1046	6,26.10 ⁻⁴	0,80	1046	-
AC	24h	-	-	-	970	6,49.10 ⁻⁴	0,78	970	-
	48h	-	-	-	969	7,69.10-4	0,77	969	-
	8h	-	-	-	1062	3,66.10-4	0,76	1062	2%
AC-INIB	24h	-	-	-	1234	3,36.10 ⁻⁴	0,76	1234	21%
	48h	-	-	-	1400	3,01.10 ⁻⁴	0,76	1400	31%
	8h	27	7,84.10 ⁻³	0,62	1578	4,81.10 ⁻²	0,86	1605	35%
PPY-PO	24h	147	5,67.10 ⁻³	0,46	3529	5,10.10 ⁻²	0,85	3676	74%
PPT-DDSA	48h	225	4,17.10 ⁻³	0,45	5284	5,52.10 ⁻²	0,88	5509	82%
	8h	598	2,95.10 ⁻³	0,33	446	1,78.10 ⁻¹	1,00	1044	-
PPY-PO	24h	336	4,16.10-4	0,40	2511	1,40.10 ⁻³	0,56	2847	66%
FFT-SA	48h	402	9,26.10-4	0,45	3459	1,65.10 ⁻³	0,62	3861	75%
554 501	8h	563	3,61.10 ⁻⁴	0,55	467	4,98.10 ⁻²	0,84	1030	-
PPY-PO	24h	1164	3,12.10-4	0,64	693	6,87.10 ⁻²	0,87	1857	48%
FFT-LA	48h	1690	3,60.10-4	0,63	685	1,35.10 ⁻¹	0,90	2375	59%
	8h	392	3,38.10 ⁻⁴	0,68	370	8,34.10 ⁻²	0,99	762	-
	24h	674	3,39.10 ⁻⁴	0,77	351	1,39.10 ⁻¹	1,00	1025	5%
PPT-UA	48h	1128	3,29.10-4	0,77	298	5,51.10 ⁻²	0,66	1426	32%
	8h	469	3,71.10 ⁻⁴	0,67	470	4,38.10 ⁻²	0,82	939	-
	24h	1141	2,62.10-4	0,80	563	1,48.10 ⁻¹	1,00	1704	43%
PP1-IA	48h	1452	2,82.10-4	0,80	187	1,48.10 ⁻¹	1,00	1639	41%

PPy-PO|PPy-DBSA e PPy-PO|PPy-SA

↑R_{CT} ↑tempo

Indicativo de proteção contra corrosão [24]

PPy-PO|PPy-DBSA

- comportamento capacitivo em baixas frequências
- dopagem com ânion volumoso → dopante preso dentro da matriz polimérica → alteração da permeseletividade do revestimento de aniônico para catiônico [29]:

 $PPy^0 + nX^- \leftrightarrows PPy^{n+}X_n + ne^-$

 $PPy^{0}(X_{n}[C]_{n/m}) \leftrightarrows PPy^{n+}X_{n} + n/mC^{m+} + ne^{-}$

- repulsão eletrostática entre cloreto e dopante preso no filme polimérico
- retardo do alcance das espécies corrosivas na superfície do metal [37]
- processo corrosivo controlado por difusão [29]

Fonte: O autor

Tabela 16: Parâmetros eletroquímicos ajustados a partir dos circuitos equivalentes.

_	Tempo	Rc	CPEc	CPEc Ret		CPEDL		Re	
Amostra	de imersão	(Ω)	Y ₀ (F.s ⁿ⁻¹)	α	α (Ω)	Y ₀ (F.s ⁿ⁻¹)	α	(Ω)	3
	8h	-	-	-	1046	6,26.10 ⁻⁴	0,80	1046	-
AC	24h	-	-	-	970	6,49.10 ⁻⁴	0,78	970	-
	48h	-	-	-	969	7,69.10-4	0,77	969	-
	8h	-	-	-	1062	3,66.10 ⁻⁴	0,76	1062	2%
AC-INIB	24h	-	-	-	1234	3,36.10-4	0,76	1234	21%
	48h	-	-	-	1400	3,01.10-4	0,76	1400	31%
	8h	27	7,84.10 ⁻³	0,62	1578	4,81.10 ⁻²	0,86	1605	35%
PPY-PO	24h	147	5,67.10 ⁻³	0,46	3529	5,10.10 ⁻²	0,85	3676	74%
PPT-DD3A	48h	225	4,17.10 ⁻³	0,45	5284	5,52.10 ⁻²	0,88	5509	82%
	8h	598	2,95.10 ⁻³	0,33	446	1,78.10 ⁻¹	1,00	1044	-
PPY-PO	24h	336	4,16.10-4	0,40	2511	1,40.10 ⁻³	0,56	2847	66%
PPT-SA	48h	402	9,26.10-4	0,45	3459	1,65.10 ⁻³	0,62	3861	75%
	8h	563	3,61.10 ⁻⁴	0,55	467	4,98.10 ⁻²	0,84	1030	-
PPY-PO	24h	1164	3,12.10-4	0,64	693	6,87.10 ⁻²	0,87	1857	48%
PPT-LA	48h	1690	3,60.10-4	0,63	685	1,35.10 ⁻¹	0,90	2375	59%
	8h	392	3,38.10 ⁻⁴	0,68	370	8,34.10 ⁻²	0,99	762	-
PPY-PO	24h	674	3,39.10-4	0,77	351	1,39.10 ⁻¹	1,00	1025	5%
FFT-OA	48h	1128	3,29.10-4	0,77	298	5,51.10 ⁻²	0,66	1426	32%
	8h	469	3,71.10-4	0,67	470	4,38.10 ⁻²	0,82	939	-
PPY-PO	24h	1141	2,62.10-4	0,80	563	1,48.10 ⁻¹	1,00	1704	43%
PPY-IA	48h	1452	2,82.10-4	0,80	187	1,48.10 ⁻¹	1,00	1639	41%

PPy-PO|PPy-LA, PPy-PO|PPy-OA e PPy-PO|PPy-TA ↓R_{CT} ↑tempo

- Indicativo de perda de proteção anticorrosiva
- Saturação dos revestimentos com água e íons corrosivos do meio, permitindo sua penetração até atingir a superfície metálica [24]
- ✓ **PPy-PO|PPy-LA:** sutil e notada a partir de 48 horas
- ✓ PPy-PO|PPy-OA: redução gradual com o tempo
- ✓ **PPy-PO|PPy-TA:** acentuada a partir de 48 horas

Tabela 16: Parâmetros eletroquímicos ajustados a partir dos circuitos equivalentes.

	Tempo	Re	CPEc	;	Ret	CPED	L	Ro	
Amostra	de imersão	(Ω)	Y ₀ (F.s ⁿ⁻¹)	α	(Ω)	Y ₀ (F.s ⁿ⁻¹)	α	(Ω)	3
	8h	-	-	-	1046	6,26.10-4	0,80	1046	-
AC	24h	-	-	-	970	6,49.10-4	0,78	970	-
	48h	-	-	-	969	7,69.10-4	0,77	969	
	8h	-	-	-	1062	3,66.10-4	0,76	1062	2%
AC-INIB	24h	-	-	-	1234	3,36.10-4	0,76	1234	21%
	48h	-	-	-	1400	3,01.10-4	0,76	1400	31%
	8h	27	7,84.10 ⁻³	0,62	1578	4,81.10 ⁻²	0,86	1605	35%
PPY-PO	24h	147	5,67.10 ⁻³	0,46	3529	5,10.10 ⁻²	0,85	3676	74%
PPT-DBSA	48h	225	4,17.10 ⁻³	0,45	5284	5,52.10 ⁻²	0,88	5509	82%
	8h	598	2,95.10 ⁻³	0,33	446	1,78.10 ⁻¹	1,00	1044	-
PPY-PO	24h	336	4,16.10-4	0,40	2511	1,40.10 ⁻³	0,56	2847	66%
PPT-5A	48h	402	9,26.10-4	0,45	3459	1,65.10 ⁻³	0,62	3861	75%
	8h	563	3,61.10-4	0,55	467	4,98.10 ⁻²	0,84	1030	-
PPY-PO	24h	1164	3,12.10-4	0,64	693	6,87.10 ⁻²	0,87	1857	48%
PPT-LA	48h	1690	3,60.10-4	0,63	685	1,35.10 ⁻¹	0,90	2375	59%
	8h	392	3,38.10-4	0,68	370	8,34.10 ⁻²	0,99	762	-
PPY-PO	24h	674	3,39.10-4	0,77	351	1,39.10 ⁻¹	1,00	1025	5%
PPT-UA	48h	1128	3,29.10-4	0,77	298	5,51.10 ⁻²	0,66	1426	32%
	8h	469	3,71.10-4	0,67	470	4,38.10 ⁻²	0,82	939	-
PPY-PO	24h	1141	2,62.10-4	0,80	563	1,48.10 ⁻¹	1,00	1704	43%
PPY-IA	48h	1452	2,82.10-4	0,80	187	1,48.10 ⁻¹	1,00	1639	41%

 $R_{P} = R_{C} + R_{CT}$

Revestimentos Camada Dupla

1R_P 1tempo

- Indicativo de proteção contra corrosão do substrato metálico [24]
- ✓ Exceção PPy-PO|PPy-TA
 - queda acentuada do parâmetro R_{CT}
 - coerente com:
 - perda de proteção identificada nos ensaios de polarização potenciodinâmica
 - morfologia com espaços vazios

Ordem de proteção contra corrosão

$$\varepsilon = \frac{R_{P(C)} - R_P}{R_{P(C)}} 100$$

Após 48 horas:

Fonte: O autor

PPy-PO|PPy-DBSA > PPy-PO|PPy-SA > PPy-PO|PPy-LA > PPy-PO|PPy-TA > PPy-PO|PPy-OA

Todos os revestimentos mostraram eficiência de proteção superior ao inibidor de corrosão comercial.

- Introdução
- Objetivo
- Materiais e Métodos
- Resultados e Discussão
- ✓ Conclusões

- Revestimentos de PPy foram facilmente depositados na superfície do aço carbono pela metodologia proposta
- Os revestimentos de camada dupla apresentaram, de forma geral, características morfológicas e eletroquímicas superiores aos revestimentos de camada única.
- Todos os revestimentos de camada dupla mostraram morfologia similar a "couve-flor", conforme descrito na literatura, com grãos micro esféricos formando uma superfície homogênea e sem trincas.
- A dopagem desses filmes pode ser verificada a partir das análises de EDX (presença de P e S) e FTIR.

- Todos os revestimentos obtidos em camada dupla apresentaram potencial de corrosão deslocado para valores positivos quando comparados ao aço carbono sem revestimento e também ao aço carbono na presença de inibidor de corrosão comercial.
- Todos os revestimentos obtidos em camada dupla apresentaram correntes no ramo anódico menores do que as obtidas para o aço carbono sem revestimento.
- Revestimentos de PPy dopados com ácido tartárico apresentaram aumento abrupto da densidade de corrente em um potencial entre 0,13 a 0,35 V durante os ensaios de polarização potenciodinâmica, indicando perda de proteção. A morfologia desses revestimentos também revelou a existência de espaços vazios. Além disso, o ensaio de impedância para o PPy-PO|PPy-TA mostrou uma redução da resistência de polarização com o aumento do tempo de imersão em solução salina, o que é um indicativo de perda de proteção contra corrosão.

- Para os revestimentos dopados com ácido dodecilbezeno sulfônico (DBSA), ácido salicílico (SA), ácido láurico (LA) ou ácido oxálico (OA), verificou-se que as amostras de camada dupla (PPy-PO|PPy-DBSA, PPy-PO|PPy-SA, PPy-PO|PPy-LA e PPy-PO|PPy-OA) apresentaram potencial de corrosão deslocado para o lado positivo em relação às amostras de camada única (PPy-DBSA, PPy-SA, PPy-LA e PPy-OA).
- Os ensaios de impedância eletroquímica permitiram definir a ordem de proteção contra corrosão sendo PPy-PO|PPy-OA < PPy-PO|PPy-TA < PPy-PO|PPy-LA < PPy-PO|PPy-SA < PPy-PO|PPy-DBSA, sendo que todos revestimentos mostraram eficiência de proteção superior ao inibidor de corrosão comercial.

- Os revestimentos PPy-PO|PPy-OA e PPy-PO|PPy-TA apresentaram proteção contra corrosão (32% e 41%, respectivamente) ligeiramente superior à obtida pelo inibidor comercial (31%) após 48 horas de imersão em solução salina.
- Já os revestimentos PPy-PO|PPy-DBSA, PPy-PO|PPy-SA e PPy-PO|PPy-LA apresentaram proteção contra corrosão (82%, 75% e 59%, respectivamente) significativamente superior ao inibidor de corrosão comercial nas mesmas condições.
- Sugere-se que a camada interna dos revestimentos, dopada com ácido fosfórico, atua na manutenção de uma camada passivadora na superfície do metal.
- A camada externa, por sua vez, atua como barreira iônica, sendo que seu desempenho depende do tipo de dopante utilizado. Dopantes mais volumosos apresentaram melhor desempenho, coerente com a literatura.

Referências

- 1. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 172: Critérios de classificação dos aços. Rio de Janeiro. 2000a.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 87: Aço carbono e ligados para construção mecânica Designação e composição química. Rio de Janeiro. 2000b.
- 3. CHIAVERINI, V. Aços e Ferros Fundidos. São Paulo: ABM, 1988.
- 4. TIU, B. D. B.; ADVINCULA, R. C. Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism. **Reactive and Functional Polymers**, v. 95, p. 25-45, 2015. Doi: http://dx.doi.org/10.1016/j.reactfunctpolym.2015.08.006.
- 5. GENTIL, V. Corrosão. 3^a. ed. Rio de Janeiro: LTC, 1996.
- DESHPANDE, P. P. *et al.* Conducting polymers for corrosion protection: a review. J. Coat. Technol. Res., v. 11(4), p. 473-494, 2014. Doi: 10.1007/s11998-014-9586-7
- DESHPANDE, P. P.; SAZOU, D. Corrosion Protection of Metals by Intrinsically Conducting Polymers. Boca Raton, FL: CRC Press, 2016.
- 8. CALLISTER, W. D.; RETHWISCH, D. G. Ciência e Engenharia de Materiais: Uma Introdução. 8ª. ed. Rio de Janeiro: LTC, 2012.

- BACH-TOLEDO, L. et al. Conducting polymers and composites nanowires for energy devices: a brief review. Materials Science for Energy Technologies, v. 3, p. 78-90, 2020. Doi: https://doi.org/10.1016/j.mset.2019.09.006.
- REHMAN, A.; ZENG, X. Interfacial composition, structure, and properties of ionic liquids and conductive polymers for the construction of chemical sensors and biosensors: a perspective. Current Opinion in Eletrochemistry, v. 23, p. 47-56, 2020. Doi: https://doi.org/10.1016/j.coelec.2020.03.010.
- 12. ZHANG, W. et al. Conducting polymer/silver nanowires stacking composite films for high-performance electrochromic devices. **Solar Energy Materials and Solar Cells**, v. 200, p. 109919, 2019. Doi: https://doi.org/10.1016/j.solmat.2019.109919.
- 13. MARUTHI, N.; FAISAL, M.; RAGHAVENDRA, N. Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. **Synthetic Metals**, v. 272, p. 116664, 2021. Doi: https://doi.org/10.1016/j.synthmet.2020.116664.
- PUIGGALI-JOU, A.; VALLE, L. J.; ALEMAN, C. Drug delivery systems based on instrinsically conducting polymers. Journal of Controlled Release, v. 309, p. 244-264, 2019. Doi: https://doi.org/10.1016/j.jconrel.2019.07.035.

- MIRVAKILI, S. M.; HUNTER, I. W. Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, v. 30, p. 1704407, 2018. Doi: 10.1002/adma.201704407.
- GHOSH, S.; DAS, S.; MOSQUERA, M. E. G. Conducting polymer-based nanohybrids for fuel cell application. **Polymers**, v. 12, p. 2993, 2020. Doi: 10.3390/polym12122993.
- 17. DEBERRY, D. W. Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. Journal of The Electrochemical Society, v. 132, p. 1022-1026, 1985. Doi: https://doi.org/10.1149/1.2114008
- UMOREN, S. A.; SOLOMON, M. M. Protective polymeric films for industrial substrates: A critical review on past and recent applications with conducting polymers and polymer composites/nanocomposites. **Progress in Materials Science**, v. 104, p. 380-450, 2019. Doi: https://doi.org/10.1016/j.pmatsci.2019.04.002.
- ASHASSI-SORKHABI, H.; KAZEMPOUR, A. Incorporation of organic/inorganic materials into polypyrrole matrix to reinforce its anticorrosive properties for the protection of steel alloys: A review. Journal of Molecular Liquids, v. 309, p. 113447, 2020. Doi: https://doi.org/10.1016/j.molliq.2020.113447.
- ZADEH, M. K. et al. Corrosion performance of polypyrrole-coated metals: A review of perspectives and recent advances. Synthetic Metals, v. 274, p. 116723, 2021. Doi: https://doi.org/10.1016/j.synthmet.2021.116723

- 22. RAHMAN, S. U.; BA-SHAMMAKH, M. S. Thermal effects on the process of eletropolymerization of pyrrole on mild steel. **Synthetic Metals**, v. 104, p. 207-223, 2004. Doi: https://doi.org/10.1016/S0379-6779(03)00369-2
- 23. SOUZA, A.; CHO, L.; LIU, A. Proteção contra corrosão da superfície do aço 1020 contendo polipirrol depositado por cronoamperometria em meio de ácido metanossulfônico. **Revista Brasileira de Aplicações de Vácuo**, v. 37, p. 34-37, 2018. Doi: 10.17563/rbav.v37i1.1090.
- 24. CHEN, Z. et al. Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel. **Progress in Organic Coatings**, v. 122, p. 159-169, 2018. Doi: https://doi.org/10.1016/j.porgcoat.2018.05.022
- 25. HUNG, H. M. et al. Improvement of the corrosion protection of polypyrrole coating for CT3 mild steel with 10-camphorsulfonic acid and molybdate as inhibitor dopants. Progress in Organic Coatings, v. 131, p. 407-416, 2019. Doi: https://doi.org/10.1016/j.porgcoat.2019.03.006.
- IROH, J. O.; SU, W. Corrosion performance of polypyrrole coating applied to low carbon steel by an electrochemical process.
 Electrochimica Acta, v. 46, p. 15-24, 2000. Doi: https://doi.org/10.1016/S0013-4686(00)00519-3

- SU, W.; IROH, J. O. Formation of polypyrrole coatings on stainless steel in aqueous benzene sulfonate solucion. Eletrochimica Acta, v. 42, p. 1685-2694, 1997. Doi: https://doi.org/10.1016/S0013-4686(97)00012-1
- 28. TUKEN, T. Polypyrrole films on stainless steel. **Surface and Coatings Technology**, v. 200, p. 4713-4719, 2006. Doi: 10.1016/j.surfcoat.2005.04.011.
- VERA, R. et al. The corrosion-inhibiting effect of polypyrrole films doped with p-toluene-sulfonate, benzene-sulfonate or dodecyl-sulfate anions, as coating on stainless steel in NaCl aqueous solutions. Progress in Organic Coatings, v. 77, p. 853-858, 2014. Doi: http://dx.doi.org/10.1016/j.porgcoat.2014.01.015.
- 30. YAN, Q. et al. Effect of solvents on the preparation and corrosion protection of polypyrrole. **Progress in Organic Coatings**, v.132, p. 298-304, 2019. Doi: https://doi.org/10.1016/j.porgcoat.2019.04.014.
- 31. LIU, A. S. et al. Electrodeposition of Polypyrrole Films on 2024 Aluminum Alloy in Phosphoric Acid Solution. **Materials Science Forum**, vol. 775-776, p. 225-229, 2014. Doi: 10.4028/www.scientific.net/MSF.775-776.225.
- 32. LIU, A. S.; BEZERRA, K. M.; CHO, L. Y. Electrodeposition of polypyrrole on aluminum alloy 2024-T3 from dodecylbenzenesulfonic acid medium. International Journal of Recent Scientific Research, v. 8, p. 21449-21454, 2017. Doi: 10.24327/IJRSR

- 33. LIU, A. S.; BEZERRA, M. C.; CHO, L. Y. Electrodeposition of Polypyrrole Films on Aluminum Surfaces from a p-toluene Sulfonic Acid Medium. **Materials Research**, v. 12, p. 503-507, 2009. Doi: https://doi.org/10.1590/S1516-14392009000400021.
- 34. BEZERRA, K. M. et al. Proteção do alumínio 2024 por filmes de polipirrol depositados em ácido p-tolueno sulfônico. **Revista UniVap**, v. 20, p. 111-121, 2015. Doi: https://doi.org/10.18066/revunivap.v20i36.258
- 35. SOUZA, A. F. et al. Proteção contra corrosão da liga de alumínio 2024-T3 por filme de polipirrol eletrodepositado em ácido p-tolueno sulfônico. **Revista Brasileira de Aplicações de Vácuo**, v. 36, p. 34-38, 2017. Doi: https://doi.org/10.17563/rbav.v36i1.1059
- 36. FERREIRA, B. R.; LIU, A. S.; CHO, L. Y. Behavior of Polypyrrole Film Chemically Polymerized with Lauric Acid on Copper Surface. **Materials Science Forum**, v. 930, p. 434-439, 2018. Doi: 10.4028/www.scientific.net/MSF.930.434.
- 37. MENKUER, M.; OZKAZANC, H. Electrodeposition of polypyrrole on copper surfaces in OXA-DBSA mix electrolyte and their corrosion behaviour. **Progress in Organic Coating**, v. 130, p. 149-157, 2019. Doi: https://doi.org/10.1016/j.porgcoat.2019.01.058
- 38. PINHEIRO, I. M. V.; CHO, L. Y. The Influence of Oxidizing Agent in the Chemical Deposition of Polypyrrole on Lead Alloy Surface. Journal of Materials Science Research, v. 9, p. 1-9, 2020. Doi: 10.5539/jmsr.v9n1p1.

- 39. PANG, A. L.; ARSAD, A.; AHMADIPOUR, M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. **Polym Adv Technol.**, v. 32, p. 1428–1454, 2021. Doi: 10.1002/pat.5201
- 40. VERNITSKAYA, T. V.; EFIMOVET, O. N. Polypyrrole: a conducting polymer; its synthesis, properties and applications. **Russian Chemical Reviews**, v. 66, p. 443-457, 1997. Doi: https://doi.org/10.1070/RC1997v066n05ABEH000261
- 41. IROH, J. O. et al. Electrochemical synthesis: a novel technique for processing multi-functional coatings. Progress in Organic Coatings, v.
 47, p. 365-375, 2003. Doi: 10.1016/j.porgcoat.2003.07.006.
- FERREIRA, C. A. et al. Electropolymerization of pyrrole on iron electrodes: Influence of solvent and electrolyte on the nature of the deposits.
 J. Electroanal. Chem., v. 284, p. 351-369, 1990. Doi: 10.4028/www.scientific.net/MSF.930.434
- 43. MACHIDA, S.; MIYATAM, S.; TECHAGUMPUCH, A. Chemical synthesis of highly electrically conductive polypyrrole. Synthetic Metals, v.
 31, p. 311-318, 1989. Doi: https://doi.org/10.1016/0379-6779(89)90798-4
- 44. HIEN, N. T. L. et al. Role of doping ions in the corrosion protection of iron by polypyrrole films. **Electrochimica Acta**, v. 50, p. 1747-1755, 2005. Doi: 10.1016/j.electacta.2004.10.072.

- 45. BAZZAOUI, M. et al. New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium. **Electrochimica Acta.**, v. 47, p. 2953-2962, 2002. Doi: https://doi.org/10.1016/S0013-4686(02)00188-3
- 46. VASQUES, C. T. et al. Polypyrrole-modified starch films: structural, thermal, morphological and electrical characterization. **E-Polymer**, v. 26, p. 1-17, 2010. Doi: https://doi.org/10.1515/epoly.2010.10.1.253
- 47. PAVIA, D. L. et al. Introdução à espectroscopia. São Paulo: Cengage Learning, 2010.
- 48. CHEN, K. et al. Characterization of the interaction of rare earth elements with P507 in a microfluidic extraction system using spectroscopic analysis. **Chemical Engineering Journal**, v. 356, p. 453–460, 2019. Doi: https://doi.org/10.1016/j.cej.2018.09.039
- 49. YAGAN, A.; PEKMEZ, N. O.; YILDIZ, A. Inhibition of corrosion of mild steel by homopolymer and bilayer coatings of polyaniline and polypyrrole. **Progress in Organic Coatings**, v. 59, p. 297-303, 2007. Doi: 10.1016/j.porgcoat.2007.04.006
- SHAHRYARI, Z. et al. Corrosion mitigation ability of differently synthesized polypyrrole (PPy-FeCI3 & PPy-APS) conductive polymers modified with Na2MoO4 on mild steel in 3.5% NaCl solution: Comparative study and optimization. Corrosion Science, v. 193, p. 109894, 2021. Doi: https://doi.org/10.1016/j.corsci.2021.109894
- 51. DEBIEMME-CHOUVY, C.; TRAN, T. T. M. An insight into the overoxidation of polypyrrole materials. **Electrochemistry Communications**, v. 10, p. 947–950, 2008. Doi: 10.1016/j.elecom.2008.04.024

OBRIGADO!

LUCIANO GUIOTTI

(12) 99660-4840

guiottilg@gmail.com

"A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original" - Albert Einstein