line analysis and chemical modelling the case of $\rm NH_2CHO$

Edgar Mendoza IAG/USP, São Paulo

International Symposium and Workshop on Astrochemistry

Campinas 07/07/2016

LINE ANALYSIS

MODELLING

LINE ANALYSIS

MODELLING

Index

Introduction

Tools of spectral line analysis

Tools of chemical modelling

MODELLING

< 行

atoms and molecules

The Elements According to Relative Abundance

Excernity Well 26.3.1 p.P. entry Excernity Well 26.3.1 p.P. entry Excernity Well 26.3.1 p.P. entry Excernity Well 26.3 p.P.

Contraction of the second seco

Thaddeus et al. 2008 and references therein.

atoms and molecules

		Known Int	terstellar and (Circumstellar M	olecules (July 2	000)	
2	3	4	5 N	umber of Atom 6	s 7	8	9
H ₂	H ₂ O	NH ₃	SIH4	CH ₃ OH	CH ₃ CHO	CH ₃ CO ₂ H	CH ₃ CH ₂ OH
OH	H ₂ S	H ₂ O ⁺	CH ₄	NH ₂ CHO	CH ₃ NH ₂	HCO ₂ CH ₃	(CH ₃) ₂ O
SO	SO ₂	H ₂ CO	сноон	CH ₃ CN	CH ₃ CCH	CH ₃ C ₂ CN	CH ₃ CH ₂ CN
SO+	HN_2^+	H ₂ CS	HC ≡ CCN	CH ₃ NC	CH ₂ CHCN	C7H	H(C≡C) ₃ CN
SiO	HNO	HNCO	CH ₂ NH	CH ₃ SH	HC₄CN	H_2C_6	$H(C \equiv C)_2 CH_3$
SiS	SiH ₂ ?	HNCS	NH ₂ CN	C ₅ H	C ₆ H		C ₈ H
NO	NH ₂	CCCN	H ₂ CCO	HC ₂ CHO	c-CH ₂ OCH ₂		
NS	H_3^+	HCO ⁺	C₄H	CH ₂ =CH ₂	C ₇ ?		
HCI	NNO	CCCH	$c-C_3H_2$	H ₂ CCCC			
NaCI	HCO	c-CCCH	CH ₂ CN	HC ₃ NH ⁺) `	- Carbon ch	ains
KCI	HCO+	ccco	C ₅	C ₅ N		- Complex ()rganic Molecules
AICI	OCS	CCCS	SIC ₄	C5S?		- Transmann	shaaka and
AIF	CCH	HCCH	H ₂ CCC			- I racers of	shocks and
PN	HCS ⁺	HCNH ⁺	HCCNC			UV-irradi	ation
SIN	c-SiCC	HCCN	HNCCC				1 120
NH	CCO	H ₂ CN	H ₃ CO ⁺				E.
CH	CCS	c-SiC ₃					- 100 T
CH+	C ₃	CH ₃					lalr
CN	MgNC	CH ₂ D ⁺ ?					80 10.
CO	NaCN					/	- 60 V
CS	CH_2					1	fole
C_2	MgCN					1/	- 40 EL
SIC	HOC+				CH	H,O NH,	8
CP	HCN				CH;	OH	20
CO+	HNC				f		
HF	SICN				1940 50 6	50 70 80 Vear	90 2000
	KCN?					real	

Thaddeus et al. 2008 and references therein.

detection and analysis of NH₂CHO in L1157-B1

- ✓ Analysis: GILDAS + CASSIS
- ✓ Physical conditions: Rotational diagram
- ✓ Chemical modelling: ASTROCHEM

L1157 image (Spitzer Space Telescope IRAC).

LINE ANALYSIS

MODELLING

Why formamide? $\rm NH_2CHO$ and HNCO are the simplest molecules with H, C, N and O.

Importance of $\rm NH_2CHO$ as a building block (Saladino et al. 2012).

0

◆□▶ ◆□▶ ◆□▶ ◆□▶ = = の(

LINE ANALYSIS

MODELLING

Index

Introduction

Tools of spectral line analysis

Tools of chemical modelling

ASAI: Astrochemical Surveys At IRAM

Through ASAI was proposed an unbiased spectral exploration of a carefully selected sample of sources, which cover the full formation processes of solar-type stars.

PIs: Lefloch & Bachiller (350 h with IRAM-30m)

The need for systematic spectral surveys

- Powerful diagnostic to study the chemical evolution of star-forming regions
- It is possible to probe the chemical differentiation along the line of sight of several sources

Lefloch (IPAG) & Bachiller (OAN) 2015

LINE ANALYSIS

MODELLING

The ASAI large program

Astrochemical Surveys At Iram: 350 hours of observation at IRAM-30m (PIs: Lefloch & Bachiller 2014) Sources: Samples that cover all the evolutionary phases of solar type protostars

Frequencies observed through ASAI: 3 mm: 80 - 116 GHz 2 mm: 130 - 170 GHz 1.3 mm: 200 - 320 GHz 0.8 mm: 329 - 350 GHz

0

◆ロ > ◆母 > ◆臣 > ◆臣 > ◆臣 > ◇ ○ ○

Data reduction

The data reduction was performed using the GILDAS/CLASS90 package.

http://www.iram.fr/IRAMFR/GILDAS/

The CDMS and JPL spectroscopy databases were used to identify lines

http://www.astro-uni-koel.de/cgi-bin/cdmssearch http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

The telescope and receiver paramenters:

http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies


```
CLASS + Weeds
√Line analysis
√Modelling considering LTE conditions
√Databases as CDMS and JPL
https://www.iram.fr/IRAMFR/GILDAS/doc/html/weeds-html/weeds.html
look for weeds.pdf
. . .
* Welcome to CLASS
* Loaded extensions
weeds (S.Maret, P.Hily-Blant, J.Pety, S.Bardeau, E.Reynier)
. . .
Available commands:
LID Identify lines on the current spectra
LFIND Find lines from a species within a frequency range
LLIST List lines from the line index
LGET Get a line from the line index
LPLOT Plot a line from the current line index
MODSOURCE Model the emission of a source at the LTE
MODSHOW Show the results of MODSOURCE
```


Formamide in L1157-B1/ASAI

```
LAS> select /freg 84000 85000
I-SELECT, 3123 lines found in the frequency range 84000.0 to 85000.0 MHz
LAS > select /freq 84541.829 84546.088
I-SELECT, 6 lines found in the frequency range 84541.829 to 84546.088
MHz
LAS> llist
(...)
LAS> lget 2 I-LGET, Found line frequency in the current scan
Species Freq[MHz] Err[MHz] Eup[K] Gup Aij[s-1] Upper level - Lower level
Origin
1 HC(0)NH2, v=0 84542.330
                             0.000
                                      10.2
                                             9
                                                 4.09e-05
                                                                    3 0
3 cdms
```


CASSIS

 \checkmark An easy and interactive software to analyse lines

 \checkmark CASSIS is useful to identify and reproduce lines using databases as CDMS, JPL and NIST

All the documentation and information at http://cassis.irap.omp.eu/?page=cassis

Cassis 3.8.1 - database from SQLITE (cassis20150223.db) File Edit Modules View Scripts Windows Templates Configuration VO Help The Annual An						
🕼 🖨 💿 Line Analysis 1						
Data	Template					
Load Visr data: 0.0 km/s v in : REST v Telescope ???	ISM 👻	Load config				
	Name Tag Sel.					
	p-H2D+ 4581					
Tuning	0-H2D+ 4591					
Bange min: 0.0 max: 1 GHz T Band: 60.0 km/s T	p-D2H+ 5581					
	o-D2H+ 5591	Dienlaw				
	p-NH3 17082	bispidy				
Threshold	0-NH3 17092					
Fun min: 0.0 max: 150.0 K 🗶 Aii min: 0.0 max: *	p-H20 18083					
	p-D20 20081					
tun mini la many la Mun mini la many la tun mini la many la Mun mini la many la	0-D20 20091	Course and the				
Jup min: * max: * Kup min: * max: * Lup min: * max: * Mup min: * max: * 00000000000000000000000000000000000						
LTE-RADEX 🔲	Lusca Loocal					
Parameters Noise	Oversamp	ling				
Telescope: apex Tmb->Ta conv apex Tms:	0.0 mK V Oversam	pling: <u>3.0</u>				
Component 1 X +						
Mode: Full LTE V Interacting Tbg [K]: 2.73 N(H ₂) [cl	m-4]: 7.5E22 Continue	Im				
Molecules: Operations 💌 Geometry: Sphere 💌 V _{lsr} : 0.0 km/s	Conti	nuum 0 [K]				
Species Tag Database Compute N(Sp) (cm-2) Abundance (/H2)	Tex (K) FWHM (km/s)	Size (")				

C

CASSIS

 \checkmark An easy and interactive software to analyse lines \checkmark CASSIS is useful to identify and reproduce lines using databases as CDMS, JPL and NIST

All the documentation and information at http://cassis.irap.omp.eu/?page=cassis

INTRO 000C MODELLING

CASSIS functionalities

Adjustment of the source parameters

Frequência	Eu	∫ T _{mb} dv				
MHz	K	mK km s ⁻¹				
81505.17	15.4	201 ± 4				
86181.39	23.3	6629 ± 3				
90686.38	26.1	7489 \pm 4				
93870.11	19.9	175 ± 3				
99866.52	28.1	8043 ± 3				
103640.75	31.1	6543 ± 2				
106347.72	24.9	154 \pm 4				
113410.19	33.6	6158 ± 5				

http://cassis.irap.omp.eu/?page=cassis

MODELLING 000000000

CASSIS Modules: Rotational diagram

- \checkmark Rotational diagram: An important technique to analyse properties from molecular line emission (see Goldsmith et al. 1999).
- \checkmark In LTE conditions, the temperature obtained should be expected to be equal to the kinetic temperatures if all the level were thermalized

$$\ln \frac{N_u}{g_u} = -\frac{1}{T_{rot}} \left(\frac{E_u}{k}\right) + \left[\ln N_T - \ln Q(T_{rot})\right] \quad \rightarrow \quad \rightarrow \quad N_u = \frac{8\pi h\nu^2 A}{hc^3 A_{ul}}$$

A simple analysis of $HC^{13}CCN$

LTE conditions: 1. Excitation temperatures 2. FWHM 3. Column densities...

MODELLING 000000000

CASSIS Modules: Rotational diagram

- \checkmark Rotational diagram: An important technique to analyse properties from molecular line emission (see Goldsmith et al. 1999).
- \checkmark In LTE conditions, the temperature obtained should be expected to be equal to the kinetic temperatures if all the level were thermalized

$$\ln \frac{N_u}{g_u} = -\frac{1}{T_{rot}} \left(\frac{E_u}{k}\right) + \left[\ln N_T - \ln Q(T_{rot})\right] \quad \rightarrow \quad \rightarrow \quad N_u = \frac{8\pi h \nu^2 A}{h c^3 A_{ul}}$$

A simple analysis of HC¹³CCN

LTE conditions: 1. Excitation temperatures 2. FWHM 3. Column densities... $(\Box \mapsto \langle \overline{\sigma} \rangle \land \overline{z} \Rightarrow \langle \overline{z} \rangle \land \overline{z} > \langle \overline{z} > \langle \overline{z} \rangle \land \overline{z} > \langle \overline{z} > \langle \overline{z} \rangle \land \overline{z} > \langle \overline{z} \rangle \land \overline{z} > \langle \overline$

MODELLING 000000000

CASSIS Modules: Rotational diagram

- \checkmark Rotational diagram: An important technique to analyse properties from molecular line emission (see Goldsmith et al. 1999).
- \checkmark In LTE conditions, the temperature obtained should be expected to be equal to the kinetic temperatures if all the level were thermalized

$$\ln \frac{N_u}{g_u} = -\frac{1}{T_{rot}} \left(\frac{E_u}{k}\right) + \left[\ln N_T - \ln Q(T_{rot})\right] \quad \rightarrow \quad \rightarrow \quad N_u = \frac{8\pi h\nu^2 A}{hc^3 A_{ul}}$$

A simple analysis of $HC^{13}CCN$

LTE conditions: 1. Excitation temperatures 2. FWHM 3. Column densities...

LINE ANALYSIS

MODELLING

Index

Introduction

Tools of spectral line analysis

Tools of chemical modelling

1. Astrochem

http://smaret.github.io/astrochem/

The code compute the abundances of chemical species, as a function of time, in the interstellar medium.

The code reads a network of chemical reactions: OSU database (http://faculty.virginia.edu/ericherb/research.html)

- Molecular abundances as a function of time
- Routes of formation and destruction
- Formulating the problem: Physical condition + chemical abundances

1. Astrochem http://smaret.github.io/astrochem/

The code compute the abundances of chemical species, as a function of time, in the interstellar medium.

The code reads a network of chemical reactions: OSU database (http://faculty.virginia.edu/ericherb/research.html)

- Molecular abundances as a function of time
- Routes of formation and destruction
- Formulating the problem: Physical condition + chemical abundance

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> のの

Physical conditions

Properties as temperature, density and visual extinction can be introduced in an input file with extension .mdl

```
# -----
# Source model file example
# shell number, Av [mag], nH [cm-3], Tgas [K], Tdust [K]
0 0 0.e0 0 0
# ------
```

Chemical properties

Chemical abundance with respect to ${\tt H}$ can be introduced in an input file with extension .ini

```
[files]
source = input-file.mdl
chem = osu2009.chm
# Physical paramaters
[phys]
chi = 0.0
cosmic = 0.00000000e-00
grain-size = 0.0
# Solver parameters
ti = 0e-0
tf = 0e0
http://smaret.github.io/astrochem/
```

```
# Initial abundances [abundances]
C(+) = 0.0e+0
H2O = 0.0e+0
NH2CHO = 0.0e+0
# Output
[output]
abundances =
suffix = model-name
time-steps = 0
trace-routes = 0
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Chemical networks of Astrochem

osu2009.chm: the network contains the reactions and coefficients of the Ohio State University. The network is composed by around 6000 reactions and 460 chemical species

🗈 osu200	19.chm ×						
)H	+ H	-> H2			4.95e-17	5.00e-01	0.00e
+88 0	1					-	
e(-)	+ grain	-> grain(-)			6.90e-15	5.00e-01	0.00e
+00 -1	<pre>4 (rain(-))</pre>		+ orain		4 996.17	5 886-81	0.000
+80 -1	3		grach		4.500 17	5.000 01	0.000
Fe(+)	+ grain(-)	-> Fe	+ grain		2.30e-17	5.00e-01	0.00e
+00 -1	4						
H(+)	+ grain(-)	-> H	+ grain		1.70e-16	5.00e-01	0.00e
+00 -1	5						
He(+)	+ grain(-)	-> He	+ grain		8.500-17	5.000-01	0.000
Ho(+)	+ orain(-)	-> Ma	+ orain		3.70e-17	5.00e-01	0.00e
+00 -1	7						
N(+)	+ grain(-)	-> N	+ grain		4.70e-17	5.00e-01	0.00e
+88 -1	8						
Na(+)	+ grain(-)	-> Na	+ grain		3.60e-17	5.00e-01	0.00e
+00 -1	y analo()				4 40= 17	F 00= 01	0.00-
+88 =1	+ grach(+)	-3 0	* gracii		4.400-17	2.006.01	0.000
S(+)	+ grain(-)	-> S	+ grain		3.00e-17	5.00e-01	0.00e
+00 -1	11						
Si(+)	+ grain(-)	-> Si	+ grain		3.30e-17	5.00e-01	0.00e
+00 -1	12						
H3(+)	+ grain(-)	-> HZ	+ H	+ grain	1.00e-16	5.00e-01	0.000
HCO(+)	+ grain(-)	- ». H	+ (0	+ orain	3 10e-17	5.00e-01	0.000
+00 -1	14			. groth	01100 11		01000
C	+ cosmic-ray	-> C(+)	+ e(-)		1.02e+03	0.00e+88	0.00e
+88 1	15						
Cl	+ cosmic-ray	-> Cl(+)	+ e(-)		3.00e+03	0.00e+00	0.00e
+00 1	16	E Falles			1 5003	0.0000	0.00-
+88 1	+ COSPICE-Fay	-> re(+)	+ e(-)		1.508+05	0.002+00	0.009
Н	+ cosmic-ray	-> H(+)	+ e(-)		4.60e-01	0.00e+00	0.00e

Hasegawa, Herbst & Leung (1992)

The case of NH₂CHO

Chemical equations	k(80 K) (cm ³ s ⁻¹)						
Formation processes							
(a) $NH_2 + H_2CO \rightarrow NH_2CHO + H$	1×10^{-10}						
(b) $\mathrm{NH_2CH_2O^+}$ + $e^ ightarrow$ $\mathrm{NH_2CHO}$ + H	2.9×10^{-7}						
Destruction processes							
(c) H_3^+ + NH ₂ CHO \rightarrow NH ₂ CH ₂ O ⁺ + H ₂	3.9×10^{-8}						
(d) \widetilde{CH}_{3}^{+} + NH ₂ CHO \rightarrow CH ₅ N ⁺ + HCO	1.9×10^{-8}						
(e) H_3O^+ + $NH_2CHO \rightarrow NH_2CH_2O^+$ + H_2O	1.8×10 ⁻⁸						
(f) H ⁺ + NH ₂ CHO \rightarrow NH ₄ ⁺ + CO	1.7×10^{-8}						

Two cases:

- a. Typical abundances of NH_2 and H_2CO in interstellar conditions
- b. Considering abundances of NH_2 and H_2CO higher by a factor 1000 \pm

Chemical behaviour of COMs: Several possibilities Chemical networks can be explored changing easily physical properties

Chemical behaviour of COMs: Several possibilities

Chemical networks can be explored changing easily physical properties

æ

・ロト ・聞ト ・ヨト ・ヨト

Chemical behaviour of COMs: Several possibilities

Chemical networks can be explored changing easily physical properties

Tools of chemical modelling: Nahoon

✓ Nahoon computes the chemical abundances as a function of time considering a gas-phase chemical model (Wakelam et al. 2012)
 ✓ The code is written in Fortran 90 and is available on KIDA to compute gas-phase chemistry
 More info: Wakelam et al. 2012 and references therein http://kida.obs.u-bordeaux1.fr/models/

Chemical reactions

- ✓ Bimolecular reactions
- Electronic recombinations
- ✓ Direct cosmic-ray processes
- ✓ Photo-processes

🗸 ...

Nahoon: input files

* Chemical network: KIDA (http://kida.obs.u-bordeaux1.fr)

. . .

CN C2H2 H HC3N 2.720e-10 -5.200e-01 1.900e+01 1.25e+00 0.00e+00 logn 4 10 300 3 904 1 1

. . .

🖹 kida.uva	3.2014	ĸ												
0.00e+60	logn	2	-9999	9999	1	129 1	1							
1-C3H2	CRP					н		1-C3H			5.000e+03	0.660e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	130 1	1							
C4H	CRP	-	0000	0000		Н		C4			5.000e+03	0.000e+00	0.000e+00	1.25e+00
0.000+00	con	2	- 99999	9999	T	CN 131 1	1	63			1 0000107	0.0000.00	0 0000100	1 500:00
0.000+00	loan	2	- 9999	9999	1	132 1	1	0			1.00000000	0.00000000	0.0000400	1.300400
C4P	CRP					c		C3P			1.500e+03	0.000e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	133 1	1							
C4S	CRP					CS		C3			1.500e+03	0.000e+00	0.000e+00	1.50e+00
0.00e+60	logn	2	-9999	9999	1	134 1	1							
C5	CRP		0000	0000		C2		C3			8.500e+02	0.000e+00	0.000e+00	1.25e+00
0.000+00	CDD	2	- 9999	9999	T	135 1	3	64			1 5000+02	0 0000+00	0 0000+00	1 250+00
0.000+66	loan	2	-9999	9999	1	136 1	3	04			1.3000402	0.00000000	0.00000000	1.236+00
HCOOH	CRP	-			-	HC00H+	-	e-			6.500e+02	0.660e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	137 1	1							
HCOOH	CRP					OH		HCO			2.490e+02	0.000e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	138 1	1				4 500-00			
CHZPH 0.000±00	LOGD	2	.0000	0000	1	120 1	1	HCP			1.5000+03	0.0000+00	0.0000+00	2.000+00
CH2NH	CRP	2	- ,,,,,,	,,,,		H2 H2	-	HCN			4.980e+03	0.660e+00	0.000e+00	2.00e+88
0.00e+00	logn	2	-9999	9999	1	140 1	1							
CH4	CRP					H2		CH2			2.340e+03	0.000e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	141 1	1							
HC3N	CRP		0000	0000		CN 142 A		CCH			1.720e+03	0.000e+00	0.000e+00	2.00e+00
C+HCCHS1	CDD	2	- 99999	99999	1	H2 H2	-	c-sic2			1 5886+83	0.000+00	0.000+00	2 000+00
0.000+00	loan	2	- 9999	0000	1	143 1	1	C DICL			115000105	0100000100	010000100	21000100
SiC3H	CRP					н		l-SiC3			1.500e+03	0.000e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	144 1	1							
SiC4	CRP					C2		c-SiC2			1.500e+03	0.000e+00	0.000e+00	2.00e+00
0.00e+00	logn	z	-99999	9999	1	145 1	1	ci cup			1 50003	0.00000	0.00000	2 0000
0 000+00	loan	2	.0000	0000	1	146 1	1	SUCHZ			1.5000+05	0.0000+00	0.0000+00	2.000+00
S1H4	CRP				-	H2 H2	-	S1H2			1.500e+03	0.660e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	147 1	1							
HC4N	CRP					C2		CH	CN		2.000e+03	0.660e+00	0.000e+00	2.00e+00
0.00e+60	logn	2	-9999	9999	1	148 1	1							
CH3CN	CRP	2	.0000	0000	4	LN 140.1	4	CH3			4.760e+03	u.uude+00	u.uude+00	z.00e+00
CH3CN	CRP	2	- 2223	2399	1	CH3CN+	1	e -			2.240e+03	0.000+00	0.000e+00	2.00e+00
	CIU					er op effer		-						

C

* Physical conditions

. . .

N / Do you want to run in the uncertainty mode ? Y or N 0.000D+00 / H tot Density (cm-3) = n(H)+2*n(H2) 0.000D+00 / Temperature (K) 0.000D+00 / Visual extinction 0.063D+00 / Time (in timeres.dat) when you want the output.dat to be written 0.000D-00 / Cosmic-ray ionization rate (s-1) 0.000D-00 / Dust to gas mass ratio (usually 0.01) 0.000D-00 / Dust grain radius (in cm) 0.000D+00 / grain density (in g cm-3) . . . * Chemistry JSPACE = 0. . .

testing the chemistry of HC_3N in L1157-B1

1 st Step	2 nd Step
Chemistry Elemental abundances e.g. Wakelam & Herbst 2008	Abundanes in steady-state $(t=1 imes10^6 ext{ yr})$
Physics $n(H) = 2 \times 10^4 \text{ cm}^{-3}$ T = 10 K $A_v = 10 \text{ mag}$ $\xi = 1 \times 10^{-17} \text{ s}^{-1}$ 	$n(H) = 1 \times 10^5 \text{ cm}^{-3}$ T = 70 K $A_v = 10 \text{ mag}$ $\xi = 1 - 3 \times 10^{-16} \text{ s}^{-1}$

LINE ANALYSIS

MODELLING

Index

Introduction

Tools of spectral line analysis

Tools of chemical modelling

(

(日) (四) (三) (三)