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Our Hypothesis

Low-energy electrons (< 20 ev)
could play a significant role in
the synthesis of “complex”
organic molecules previously
thought to form exclusively via
photons
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C. Arumainayagam et al., Surface Science Reports 65 (2010) 1‒44.
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Another Key Difference 
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Low-energy 
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PART I
RADIOLYSIS OF METHANOL



Post-Irradiation Temperature-Programmed Desorption
12CH3OH on Mo(110)

C.R. Arumainayagam,  et. al. J. Phys. Chem., 99 (1995) 9530



Post-irradiation temperature 
programmed desorption is 
useful for identifying labile 
radiolysis products (e.g., 
CH3OCH2OH)

Conclusion 1



Radiolysis Yield vs. Incident Electron Energy
Methoxymethanol: CH3OCH2OH  (m/e = 61)
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CH3O● +  ●CH₂OH → CH3OCH₂OH

Boyer, Boamah, Sullivan, Arumainayagam, Bass, Sanche, (J. Phys. Chem. C, 2014, 118, 22592-22600) 



• Dissociative electron attachment may 
not play an importance role in 
radiation-induced chemical synthesis 
reactions of methanol

Conclusion 2

• Radical-radical reactions are the likely 
mechanism for the formation of ethylene 
glycol and methoxymethanol

• Barrier-less radical-radical reactions 
may be rapid in interstellar ices 
because of the low temperatures (10 to 
100 K). 
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Electrons 
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• Post-irradiation temperature programmed 
desorption can be used to identify components 
in a complex mixture of radiolysis products

Conclusion 3

• The identified electron-induced methanol 
radiolysis products include many that have 
been previously identified as being formed 
by methanol UV photolysis in the 
interstellar medium

• Post-irradiation temperature programmed 
desorption results cannot be used to 
conclude if identified products are nascent 
radiolysis products 



100 monolayers CH3OH at 90 K irradiated with 14 eV electrons 2400 µC

Irradiated Methanol: IRAS Product Analysis

Sullivan, Boamah, Shulenberger, Chapman, Atkinson, Boyer, Arumainayagam; 
Monthly Notices of the Royal Astronomical Society (doi: 10.1093/mnras/stw593)



• Thermal processing above 90 K not 
necessary for product formation

• IRAS not as effective as TPD for 
identifying species in complex 
product mixture

Conclusion 4



PART II
RADIOLYSIS OF AMMONIA



Why study ammonia?

Öberg, K., et al. “The Spitzer Ice Legacy: Ice Evolution from cores to protostars.” The Astrophysical Journal 740(2011): 16 pp.
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Radiolysis Products of Ammonia

Zheng, W. et al. The Astrophysical Journal. 674:1242-1250, 2008 February 20
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Results: Yield vs Fluence
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Results: Yield vs Film Thickness
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Results: Low Energy Experiments

Leon Sanche, Andrew Bass & 
Sasan Esmaili



• Low-energy (< 20 eV) electron-
induced condensed phase reactions
may contribute to the interstellar
synthesis of “complex” molecules
previously thought to form
exclusively via UV photons

Final Conclusions

• Molecules such as methoxymethanol
may serve as tracer molecules for
the differences between photon- and
electron-induced reactions.
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