International Symposium and Workshop on Astrochemistry - ISWA 2016

Theoretical/Experimental Investigations of the Effects of Irradiation of Astrophysical ices

PROF.: LEONARDO BAPTISTA

AUTORES: LENIN DIAZ LEONARDO BAPTISTA ENIO F. DA SILVEIRA

Astrophysical ices are impinged by radiation and solar wind

Experiments used to reproduce the conditions of interstellar medium

Our Goals

- Understand the synthesis of complex molecules in the interstellar medium
- Comprehend the planetary atmospheres formation
- Assist experimental measurements
 - Determination of structural and electronic parameters
 - Evaluation of relative stability of observed species
 - Describe the reactivity of formed species

Systems studied

- Negative and positive formic acid clusters
 - Formed due to irradiation of frozen formic acid by ²⁵²Cf fission fragments
- Negative and positive hydrocarbon clusters
 - Formed due to irradiation of frozen hydrocarbons by ²⁵²Cf fission fragments and heavy ions
- Methane ions reactivity
 - Reactivity of such ions should help the knowledge about the synthesis of new molecules after bombardment of icy methane

2.4% of CH_4 in the atmosphere

Hydrocarbons and formic acid has been observed in icy comets

Formic Acid Clusters

D.P.P. Andrade et al. Journal of Electron Spectroscopy and Related Phenomena 155 (2007) 124–128 D.P.P. Andrade et al. J. Phys. Chem. C 2008, *112*, 11954–11961

Formic Acid Clusters

Cluster stability is related to hydrogen migration between formic acid unities

The right assignment of (HCOOH)nH3O+ clusters is (HCOOH)n(H⁺)H2O

Born-Oppenheimer molecular dynamics at PBE1PBE/6-311G**. Trajectory of 652 fs at 56K.

Baptista et al. J. Phys. Chem. A 2008, 112, 13382–13392

Hydrocarbon clusters

- Can be observed after irradiation of solid hydrocabons, methanol, cholesterol and other targets by heavy ions and fission fragments
- It is observed regular patterns despite of the original target
- Cluster reactivity depends upon its structure

PDMS desorption yields from different targets

F. Fantuzzi et al Chemical Physics 410 (2013) 109–117

Hydrocarbon clusters

- Were proposed the possible geometries for each cluster
- The relative stability of structures were evaluated
- Negative clusters
 - Geometry optimization at B3LYP and PBE1PBE level
 - Single point calculations at CCSD level
 - Basis: 6-311++G**, 6-31++G**, aug-cc-pvTZ, aug-cc-pvQZ

Positive clusters

- Geometry optimization at B3LYP level
- Single point calculations at CCSD and CRCC(2,3) levels

Hydrocarbon clusters-Results

F. Fantuzzi et al. / Chemical Physics 410 (2013) 109–117

Hydrocarbon clusters-Results

F. Fantuzzi et al. / Chemical Physics 410 (2013) 109–117

Hydrocarbon clusters-Results

a) trans-HCCH

b) cis-HCCH

$$\Delta E = E_{\rm cis} - E_{\rm trans}$$

E = E[vinyl⁺ (nonplanar)]-E[vinyl⁺ (planar)]

Vinylidene

Dihedral angle Planar 180° Nonplanar [155°-162°]

E = E[vinyl⁺(planar)]-E[ace⁺]

Acetylene

Pople basis: 6-31G(d, p) [**p1**]; 6-31G(0.25 0.15) [**pKB**]; 6-31++G(d,p) [**p1++**]; 6-311(d, p) [**p2**]; 6-311++(d, p) [**p2++**]; and 6-311++G(d, p) with diffuse functions exponent: $\alpha_{H} = 0.05602$, $\alpha_{C} 0.07434$ [**pG**]. Dunning/Huzinaga basis: cc-pvdz [**dh1**]; aug-cc-pvdz [**dh1aug**]; cc-pvtz [**dh2**]; aug-cc-pvtz [**dh2aug**].

Methane in the interstellar medium

- It is found in several icy bodies of Solar System:
 - Icy clouds of Jovian planets
 - Saturn's moon Titan
 - Surface of Pluto
- The exposion to radiation induces erosion of solids and synthesis of new molecules
- The incidence of cosmic rays in solids leads to the desorption of several species and formation o molecular clouds

2.4% of CH_4 in the atmosphere

Effect of radiolysis and heavy ion impact on solid methane

FT-IR measurements characterized C₂H₂, C₂H₄, C₂H₄, C₃H₈ and CH₃ radical

A. L. F. de Barros A&A 531, A160 (2011)

Objectives:

- Describe the reactivity of methane ions (gas phase)
- Study the dissociation recombination of ethane
- Calculate thermodynamics and kinetics parameters that roles the decomposition of these ions

 $CH_{4}^{+} \rightarrow CH_{2}^{+} + H_{2}$ $CH_{4}^{+} \leftrightarrow CH_{3}^{+} + H$ $CH_{4}^{-} \rightarrow Products$ $C_{2}H_{6} \leftrightarrow CH_{3} + CH_{3}$

 Relates the ions reactivity to the FT-IR measurements performed after heavy ion impact

Reactions of CH₄⁺

MRCISD(7,8)/6-311G(d,p)//NEVPT2(7,8)/6-311G(2df,2pd)

Baptista and da Silveira Phys. C hem. Chem. Phys. 16 (2014) 21867-21875

Arrhenius equation were calculated in the range of 273-500K

• Electronic structure data: MRCISD(7,8)/6-311G(d,p)//NEVPT2(7,8)/6-311G(2df,2pd)

Rate coefficients: RRKM theory

$$\begin{array}{ll} CH_4^+ \to CH_2^+ + H_2 & k_{diss}^{\infty} = 9.18 \times 10^{1.4} \mathrm{exp}(\frac{55.77}{RT}) \\ CH_4^+ \to CH_3^+ + H & k_{diss}^{\infty} = 1.42 \times 10^{1.4} \mathrm{exp}(\frac{37.12}{RT}) \\ CH_3^+ + H & \to CH_4^+ & k_{rec}^{\infty} = 1.05 \times 10^{-08} \mathrm{exp}(\frac{0.23}{RT}) \end{array}$$

Reactions of CH4⁻

Reaction	ΔE		ΔE_0	
	CASSCF(9,8)	NEVPT2(9,8)	CASSCF(9,8)	NEVPT2(9,8)
$CH_4^- \rightarrow CH_3 + H^-$	67.6	69.8	58.0	55.6
$CH_4^- \rightarrow CH_3^- + H$	103.1	84.7	93.6	69.2
$CH_4^- \rightarrow CH_2 + H_2^-$	134.2	101.4	122.2	85.0
$CH_4^- \rightarrow CH_2^- + H_2$	89.2	71.5	76.4	53.0

All values are in kcal mol⁻¹. All results were obtained with 6-311++G(d,p) basis set.

Rate coefficients for CH₄⁻ decomposition

- Electronic structure data: NEVPT2(9,8)/6-311++G(d,p)
- Rate coefficients: canonical TST

 $CH_4^- \rightarrow CH_3 + H^-$ k = 3.7 × 10⁻²¹ s⁻¹ for apical stretching (T = 298)

 $CH_4^- \rightarrow CH_2^- + H_2$ k = 1.0 × 10⁻⁴² s⁻¹ (T = 298)

Recommended cross sections for the formation of H and CH ₂ and total dissociative electron attachment cross section from methane.

Song et al. J. Phys. Chem. Ref. Data, Vol. 44, No. 2, 2015

Proposition of an initialization mechanism

Conclusions and Perspectives

- Experimental studies associated with theoretical studies provides an insightful way to assign the chemical structure of species observed in the interstellar medium
 - Geometry and electronic structure will role the reactivity of molecules
- The electronic charge influences the geometry of carbon clusters
- The kinetic and thermodynamic parameters calculated for these species may be used to justify or predict the existence of some species in the interstellar medium
 - Formation of CH₃ and CH₃+ should be related to formation of new specis after irradiation of methane ices.

Acknowledgments

- CAPES, CNPq and FAPERJ
- Prof^a. Diana Andrade from UNIVAP for lending me some images
- Prof. Sérgio Pilling from UNIVAP
- Prof^a. Heloisa M. Boechat-Roberty Observatório do Valongo UFRJ
- Prof^a. Mária Luiza Rocco DFQ/UFRJ
- MSc Felipe Fantuzzi IQ/UFRJ

Título e layout do conteúdo com gráfico

Layout de duas partes de conteúdo com tabela

- Primeiro marcador aqui
- Segundo marcador aqui
- Terceiro marcador aqui

	Grupo 1	Grupo 2
Classe 1	82	95
Classe 2	76	88
Classe 3	84	90

