Origin and excitation mechanisms of the warm CO, OH and CH⁺ in PDRs

Anna Parikka

I. Physikalisches institut, Köln

In collaboration with E. Habart, J. Bernard-Salas, M. Köhler, J. R. Goicoechea, P. Pilleri, A. Abergel, C. Pinto, C. Joblin, M. Gerin, E. Dartois, B. Godard, D. Teyssier, O. Berné, A. Fuente

- Orion A: massive star formation
- Many previous studies (e.g. Parmar et al. 1991, Tielens et al., Walmsley et al. 2000, Allers et al. 2005): comparison to new tracers, like highly excited lines
- Prototypical PDR
 - Bright: UV field
 2.5×10⁴ x the
 standard interstellar
 radiation field
 - 2) Near: ~400 pc
 - Nearly edge-on geometry: chemical stratification

Orion Bar

Excitation and structure of the Orion Bar?

Photodissociation regions (PDRs)

- Widespread phenomena
- One of the most chemically active structures in the Universe
- UV-illuminated dense structures
- Heating dominated by FUV photons
- Chemical stratification dominated by FUV photons
- Cooling dominated by C^+ , O^0 , H_2 , CO...

Mapping the Orion Bar with Herschel

PACS observed lines:

- OH 84 & 119 µm
- CH⁺ J=3-2 (120 µm)
- CO J=19-18 (137 µm)
- O⁰ 63 & 145 μm
- C+ 158 µm
- N⁺ 122 μm

Spatial resolution 5" - 11"

SPIRE observed lines (SSW & SLW):

- ¹²CO (J=4-3 to J=13-12)
- ¹³CO (J=5-4 to J=13-12)
- C¹⁸O (J=5-4 to J=13-12)
- CH+ J=1-0
- C⁰ 370 & 492 μm
- H₂O 269, 399, & 538 μm
- N⁺ 205 µm

Spatial resolution 12" - 24"

Mapping the Orion Bar with Herschel

- First spatially resolved maps of these lines (PACS)
- Total area of 110" x 110"
- Spatial resolution of 6" to 9" (0.012 – 0.018 pc)
- Each map has a specific morphology dependent on the local conditions and processes

Origin of CH⁺ and OH emission

- Similar properties:
 - $n_{crit} \sim 10^{10} \text{ cm}^{-3}$
 - E_u~250 K
- Both have a formation route with H₂
- Similar threshold:
 - CH⁺ endothermicity: ~4300 K
 - OH activation barrier: ~4800 K
 - Good correlation with high-J CO
 - Emission peaks in clumps
 - Originate in warm and dense gas

Comparison with vibrationally excited H₂

- CH+:
 - CH⁺ formation: $H_2 + C^+ \rightarrow H + CH^+$ (endothermicity: 4300 K)
 - H₂ ro-vibrational energy: to overcome energy threshold
 - Formation process of CH⁺ depends on H₂^{*}
- OH:
 - OH formation: $H_2 + O \rightarrow H + OH$
 - OH formation less dependent on H₂^{*}

CH⁺ and OH formation via vibrationally excited H₂

- CH⁺ fractional abundance highly dependent on H₂
- OH much less dependent: energy activation barrier exists even when H₂ is v=3 (Sultanov & Balakrishnan 2005)
- Nagy et al. 2013:
 - CH⁺ with H₂ formation (PDR code)
 - Wide line width could be due to chemical pumping (also our HIFI CH⁺ J=2-1)

Unexpected proplyd detection

Parikka et al. in prep.

- OH 84 µm emission coincides with proplyd 244-440
- OH detected in protoplanetary disks (Sturm et al., 2010)
- Expected the emission to be dominated by the Bar
- Confirmation with SOFIA: to separate the velocities of proplyd and surrounding nebula

Spatial morphology of high-J CO

First time observed dense structures in high-J CO lines

The clumps in H¹³CN (Lis & Schilke, 2003), CS and high-J CO are the same (size 10"-20", similar ang. res.)

High-J CO directly traces irradiated and dense structures

Link between the core and the edge of the dense clumps

High-J CO excitation

CO-ratio (19-18/12-11)

- Peaks in front of high-J CO, where UV not attenuated in PDR
- peaks along with PAHs that are sensitive to UV flux
- UV dominates:

 photoelectric heating
 H₂ pumping & formation
 (CO pumping)
- High-J CO not seen in other PDRs where UV field is weaker (NGC 7023, Köhler et al. 2014)

RADEX results

Column density maps

RADEX results

n _H	N _{CO}	Тg	η	Р	l	l
$[cm^{-3}]$	$[10^{18} \text{ cm}^{-2}]$	[K]		$[K \text{ cm}^{-3}]$	[pc]	["]
¹⁰⁵ re	1 0	230	0.3	2.3×10 ⁷	0.58	230
10°0	ue 4	160	0.4	$1.6 \times 10^{\circ}$	0.026	13
10 ⁷ gr	een 4	120	0.5	1.2×10^{9}	0.003	1.3

- Fitted with hydrogen densities of 10⁵, 10⁶, and 10⁷ cm⁻³
- Comparing length to previous studies (e.g. Jansen et al. 1995): 10⁶ cm⁻³ most likely solution (10⁷ cm⁻³, Lee et al.)
- High thermal pressure ~2x10⁸ K cm⁻³
- Similar to pressure derived with PDR code in Orion Bar (Joblin et al. In prep.) and in NGC 7023 (Köhler et al. 2014, thesis of Emeric Bron)

Summary: Orion Bar

- CH⁺ and OH in the Orion Bar
 - Emission mostly from warm and dense gas
 - Trace dense and irradiated structures
 - CH⁺ forms via vibrationally excited H₂
 - OH emission coincides with a proplyd
- CO in the Orion Bar
 - UV heating is the main route of high-J CO excitation
 - Orion Bar has high thermal pressure ($\sim 10^8$ K cm⁻³)

SOFIA

Stratospheric Observatory for Infrared Astronomy

- Boeing 747SP (Special Performance)
- Operating altitude: 11-14km
- above 99.8 percent of the Earth's atmospheric water vapor
- mainly from Palmdale/CA
- US/German project
- Primary Mirror:
 2.7m
- 8 instruments
 (6 infrared,
 2 optical)

GREAT

- German REceiver for Astronomy at Terahertz Frequencies
- IR Heterodyne Spectrometer
- Observing modes: Position switching, Beam switching, Raster mapping, On-the-fly mapping
- 60 200 μm (several windows)

1.25 – 1.39 600 CO(12-11), OD, SH, H ₂ D ⁺ , HCN, HCO ⁺	
1 m f z z z z z	
1.42 – 1.52 600 CO(13-12), [NII]	
Low-frequency L2 1.80 – 1.90 700 NH ₃ (3-2), OH(² Π _{1/2}), CO(16-15), [CII]	
Mid-frequency Ma 2.49 – 2.56 1500 ⁽¹⁸⁾ OH(² Π _{3/2})	
Mid-frequency Mb 2.67 – 2.68 3100 HD(1-0) Backends: Fast Fourier Bandwidth	Resolut
High-frequency H 4.745 1000 [OI] Transform Spectrometers [GHz]	[MHz
AFFTS 1.5	0.212
XFFTS 2.5	0.044

FFTS4G

ution

0.244

4.0

upGREAT

• 1.9 THz multi-pixel high resolution spectrometer

Table	1.	Main	atomic	and	molecular	transitions	accessible	to	up-
GREA	T/L	.FA							

Species	Rest Freq.	Transition	Comment
OH	1.834 THz		
CO	1.841 THz	J = 16 - 15	
CII	1.9005 THz	J = 3/2 - 1/2	
CO	1.955 THz	J = 17 - 16	
HeH ⁺	2.01 THz		undetected in the ISM
OI	2.06 THz		
CO	2.07THz	J = 18 - 17	barely doable
CO	2.19 THz	J = 19 - 18	blocked by atmosphere
CO	2.42 THz	J = 20 - 21	not tunable yet
NII	2.459 THz	J = 2 - 1	blocked by atmosphere
OH	2.49 THz		not tunable yet
OH	2.51 THz		not tunable yet
CO	2.52 THz	J = 21 - 20	not tunable yet

Fig. 7. Sketch of the array-OTF mapping mode. Circles indicate the beam sizes in the hexagonal array pattern. The beam spacing is 33".

Risacher et al., in prep.

Horsehead mapped in C⁺

- 17.5' x 12.5'
- spectral resolution: 0.19 kms⁻¹
- observed in 4h (vrt. Herschel/HIFI: 200h)
- Available at the SOFIA website

Max-Planck-Institut für Radioastronomie Submm-Astronomie Universität zu Köln DLR-Institut für Planetenforschung

