

3D MODELLING OF HCO⁺ IN THE LOW-MASS PROTO-STAR IRAS16293-2422

AUTHORS: D. QUÉNARD, S. BOTTINELLI, E. CAUX, V. WAKELAM

David Quénard 3rd year PhD Student (IRAP) ISWA Conference – Campiñas 6th July, 2016

GASS

QUÉNARD David - ISWA conference

Credit & Copyright: Jim Misti and Steve Mazlin (acquisition), Robert Gendler (processing).

Overview of the source

Goal: study the formation mecanism in a low-mass proto-star such as IRAS16293

Better understanding of the different formation stages of future Sun-like stars.

 Located at 120 pc from the Sun (ρ Ophiuchus complex)

- > Mass similar to the Sun (~1 M_{\odot})
- Luminous (22 L_o)
- Binary system : 2 sources
 (Wootten et al. 1989; Pech et al. 2010)
 - A (1 $\rm M_{\odot})$ and B (< 0.1 $\rm M_{\odot})$
 - distant by 5"

Infall envelope

160,000 UA

Binary system of

proto-stars A and B

Pre-stellar

cloud

Why studying HCO⁺?

Tracers of the ionisation rate in the proto-stellar environment.

HCO⁺

Gravitational collapse slowed down by collisions between neutral species and ions + electrons linked to the magnetic field.

Ionisation allows to create and destroy more complex molecules (up to COMs).

How studying HCO⁺?

Spectral surveys CHESS (*Herschel*/HIFI) and TIMASSS (IRAM 30m and JCMT + APEX) towards IRAS16293: 80-1000 GHz (E_{up} ≤ 850 K)

- HCO⁺: 11 transitions
- H¹³CO⁺ : 7 transitions
 - HC¹⁸O⁺ : 5 transitions
- DCO⁺: 5 transitions
- D¹³CO⁺ : 3 transitions

31 transitions

3D modelling of the source

2 steps: generation of the 3D physical model + radiative transfer solution

GASS code: Generator of Astrophysical Sources Structures (Quénard et al., in prep.)

Radiative transfer code LIME (Brinch et al. 2010): 3D, non-LTE, Monte-Carlo/ALI method

→ GASS is coupled to LIME thanks to its interface (GUI)

GASS code

Generator of Astrophysical Sources Structures

GASS

GASS code Generator of Astrophysical Sources Structures

Envelope model

- Physical structure (H₂ density, température) determined by Crimier et al. (2010).
- \succ To fit line profiles, the infall radius (r_{inf}) is taken to be 2400 AU instead of 1280 AU.
- ➢ No need to consider the multiplicity of the source to study the emission of HCO⁺.
- Source A dominating \rightarrow we suppose that only one envelope is centred on it.

Formation and destruction

Good recipe to form and/or destroy HCO⁺ :

CO abundance

lonisation by cosmic rays (ζ)

> H₂ density

Other important reactions: fractionation and deuteration! Estimation of isotopologues abundances (H¹³CO⁺, DCO⁺, D¹³CO⁺,...) New theoretical study made by Mladenović et al. (2014) Chemical code Nautilus (gas + grain) (Using the physical structure shown previously)

Abundance profile for the envelope only

- Different parameters are varied:
 - $\begin{array}{c} \text{Cosmic rays} \\ \text{ionisation rate } \zeta \end{array}$
 - Evolution of the initial parental cloud (age, density, temperature)
 - Age of the proto-star

→ Trend of the parameters on the abundance profile

Rao et al. (2009) & Girart et al. (2013): Young outflow detected (~ 400 yrs) in IRAS16293, seen with H¹³CO⁺!

Rollins et al. (2014) and Rawlings et al. (2000, 2004): HCO⁺ abundant in young outflows -> Chemistry destroys HCO⁺ in older outflows

Different parameters (supposed to be constant through the outflow) are varied:

- Kinetic temperature
 - H₂ density
 - HCO⁺ abundance

Line profiles

Line fitting with both envelope + outflow (for HCO⁺ and its isotopologues)

Foreground cloud in front of the source (Coutens et al. 2012)

Line profiles

Line fitting with both envelope + outflow (for HCO⁺ and its isotopologues)

Foreground cloud in front of the source (Coutens et al. 2012)

Conclusions

- HCO⁺ emission coming from both the envelope AND the outflow.
- Modellings done with the combination of GASS and LIME.
- 31 transitions of HCO⁺ and its isotopologues used simultaneously.
- Envelope abundance consistent with astrochemical modellings.

