Cálculo Diferencial e Integral I

Faculdade de Engenharia, Arquiteturas e Urbanismo – FEAU

Prof. Dr. Sergio Pilling

Parte 1 - Limites

Definição e propriedades; Obtendo limites; Limites laterais.

1) Introdução

O conceito de limite é uma das idéias que distinguem o calculo da álgebra e da trigonometria. Veremos nessa aula como definir e calcular os limites de funções. A maioria dos limites pode ser obtida por substituição, analise gráfica, aproximação numérica, álgebra ou alguma combinação dessas.

A noção de limite nos fornece um caminho preciso para verificar como as funções variam continuamente. Também usamos limites para definir retas tangentes à gráficos de funções e posteriormente a *derivada* de uma função. A derivada que veremos adiante, fornece um caminho para quantificar a taxa a que valores de uma função variam a cada instante.

2) Taxas de variação e limites

Exemplo 1. Uma pedra se desprende do topo de um penhasco. Qual é sua velocidade média durante os primeiros 2 segundos de queda?

Solução: Experimentalmente temos que $y = 4.9 t^2$

Pela definição de velocidade media
$$\overline{v} = \frac{\Delta y}{\Delta t} = \frac{4.9(2)^2 - 4.9(0)^2}{2 - 0} = 9.8 \text{ m/s}$$

Qual a velocidade da pedra no instante t=2 segundos?

Solução: Podemos calcular a velocidade média da pedra ao longo do percurso desde t=2 até qualquer tempo posterior $t=2+h,\ h>0$

$$\frac{\Delta y}{\Delta t} = \frac{4.9(2+h)^2 - 4.9(2)^2}{h}$$

O padrão que vemos na tabela nos diz que quando $h \rightarrow 0$ (h tende 0) a velocidade média se aproxima do vallor limite 19,6 m/s

Algebricamente temos ainda que:

$$\frac{\Delta y}{\Delta t} = \frac{4.9(2+h)^2 - 4.9(2)^2}{h} = \frac{4.9(4+4h+h^2) - 19.6}{h}$$
$$= \frac{19.6h + 4.9h^2}{h} = 19.6 + 4.9h$$

Logo quando h
$$\rightarrow 0$$
 temos que $\frac{\Delta y}{\Delta t} = 19.6 \ m/s$

A partir da expressão ao lado podemos construir a tabela:
$$h(s) \qquad \overline{v} = \frac{\Delta y}{\Delta t} \text{ (m/s)}$$

$$1 \qquad 24,5$$

$$0,1 \qquad 20,09$$

$$0,01 \qquad 19,649$$

$$0,001 \qquad 19,6049$$

$$0,0001 \qquad 19,60049$$

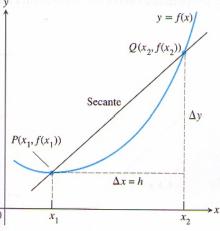
$$0,00001 \qquad 19,600049$$

$$\vdots \qquad \vdots$$

$$0 \qquad \text{indefinido (0/0)}$$

3) Taxa de variação e reta secante. Seja y = f(x), a taxa de variação média $\frac{\Delta y}{\Delta x}$ entre os pontos $P(x_1, f(x_1))$ e $Q(x_2, f(x_2))$ do gráfico abaixo será

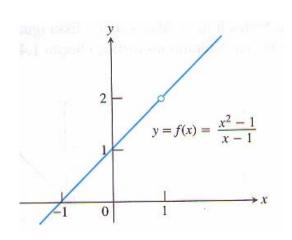
$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \qquad h \neq 0$$



que é a expressão da reta que passa por esses pontos ou, em geometria dizemos que uma reta que une dois pontos de uma curva é uma secante em relação a curva. Geometricamente uma taxa média de variação é o coeficiente angular de uma reta secante.

Exemplo 2. Comportamento de uma função perto de um ponto

Como a função
$$f(x) = \frac{x^2 - 1}{x - 1}$$
 se comporta próximo de x=1?



Embora f(x=1) não seja definida podemos tomar o valor da f(x) tão próximo de 2 quanto quisermos:

proximo de 2 quanto quiscimos.	
X	$f(x) = \frac{x^2 - 1}{x - 1}$
0,9	1,9
1,1	2,1
0,99	1,99
1,01	2,01
0,999	1,999
1,001	2,001
0,999999	1,999999
1,000001	2,000001
·	•
•	•
1	indefinido (0/0)

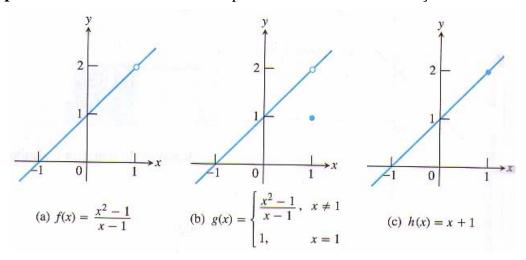
Nesse caso dizemos então que f(x) fica arbitrariamente próximo de 2 conforme x se aproxima de 1 ou, simplesmente, que f(x) se aproxima do limite 2 quando x se aproxima de 1. Escrevemos isso assim:

$$\lim_{x \to 1} f(x) = 2 \quad \text{ou} \quad \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Temos então a definição informal de limite: Seja f(x) definida em torno de x exceto em x=0, dizemos que f tem limite L quando x tende a x₀.

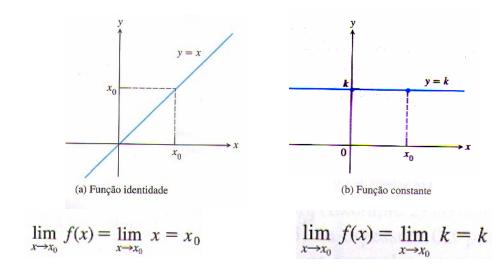
$$\lim_{x \to x_0} f(x) = L$$

Exemplo 3. O valor do limite $N\tilde{A}O$ depende do modo como a função esta definida em x_0 .

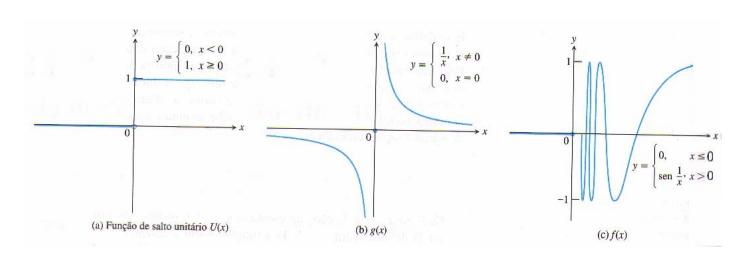


$$\lim_{x\to 1} f(x) = \lim_{x\to 1} g(x) = \lim_{x\to 1} h(x) = 2$$

Exemplo 4. Duas funções que tem limites em todos os pontos.



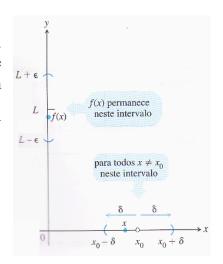
Exemplo 5. Algumas funções podem não ter limites definidos em todos os pontos.



4) Definição formal (precisa) de limite

Seja f(x) definida em um intervalo aberto em torno de x_0 , exceto em x₀. Dizemos que f(x) tem limite L quando x tende a x₀ e $\lim f(x) = L$, se para cada número $\varepsilon > 0$ existir um número correspondente $\delta > 0$ tal que, para todos os valores de x temos:

$$|x-x_0| < \delta$$
 e $|f(x)-L| < \varepsilon$.



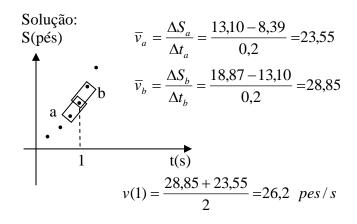
Exercícios.

1) Encontre a taxa média de variação da função $y=f(x)=x^3+1$ no intervalo I=[2,3].

Solução:
$$\frac{\Delta y}{\Delta x} = \frac{f(3) - f(2)}{3 - 2} = \frac{3^3 + 1 - (2^3 + 1)}{1} = \frac{28 - 9}{1} = 19$$

2) Os dados a seguir representam a distancia que uma bola percorre em um plano inclinado. Calcule uma estimativa para a velocidade instantânea em t=1 encontrando os limites superior e inferior e calculando a média entre eles. Em outras palavras, encontre a $\leq v(1) \leq b$ e calcule $v(1) = \frac{a+b}{2}.$

Tempo t (s)	Distancia percorrida
0	0
0,2	0,52
0,4	2,10
0,6	4,72
0,8	8,39
1,0	13,10
1,2	18,87
1,4	25,68



3) Para a função g(x) ilustrada encontre os seguintes limites ou explique porque eles nao existem.

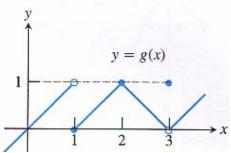
Solução:

a)
$$\lim_{x \to 1} g(x) \neq 0$$

b) $\lim_{x \to 2} g(x) = 1$

b)
$$\lim_{x \to 0} g(x) = 1$$

c)
$$\lim_{x \to 0} g(x) = 0$$



Exercícios para casa: Ex. 41, 42, 43, 44, 45, 46 do capítulo 1 do livro texto.

4) Obtendo limites

Teorema 1 Regras do Limite

Se L, M, c e k são números reais e

$$\lim_{x \to c} f(x) = L \qquad \text{e} \qquad \lim_{x \to c} g(x) = M, \quad \text{então}$$

$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

O limite da soma de duas funções é a soma de seus limites.

$$\lim_{x \to \infty} (f(x) - g(x)) = L - M$$

O limite da diferença de duas funções é a diferença de seus limites.

$$\lim_{x \to \infty} (f(x) \cdot g(x)) = L \cdot M$$

O limite do produto de duas funções é o produto de seus limites.

$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

O limite de uma constante multiplicada pela função é a constante multiplicada pelo limite da função.

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M} , \quad M \neq 0$$

O limite do quociente de duas funções é o quociente de seus limites, desde que o limite do denominador não seja zero.

se
$$r e s$$
 são inteiros e $s \neq 0$, então

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

5

desde que $L^{r/s}$ seja um número real.

O limite de uma potência racional de uma função é a potência do limite da função, desde que a última seja um número real.

Teorema 2 Os Limites de Funções Polinomiais Podem Ser Obtidos por Substituição

Se
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
, então

$$\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$$

Teorema 3 Os Limites de Funções Racionais Podem Ser Obtidos por Substituição, caso o Limite do Denominador Não Seja Zero

Se P(x) e Q(x) são polinômios e $Q(c) \neq 0$, então

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}.$$

Exemplo 6: Limite de uma função racional

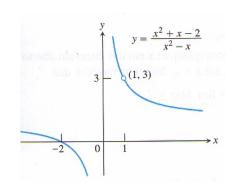
$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5} = \frac{0}{6} = 0$$

Exemplo 7: Cancelando um fator comum

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x(x - 1)} = \lim_{x \to 1} \frac{x + 2}{x}, \quad \text{se } x \neq 1$$

Logo

$$\lim_{x \to 1} \frac{x+2}{x} = \frac{1+2}{1} = 3$$



Exemplo 8: Criando e cancelando um fator comum

$$\lim_{h\to 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$$

Neste caso temos que fazer os seguintes passos:

$$\frac{\sqrt{2+h} - \sqrt{2}}{h} = \frac{\sqrt{2+h} - \sqrt{2}}{h} \cdot \frac{\sqrt{2+h} + \sqrt{2}}{\sqrt{2+h} + \sqrt{2}}$$

$$= \frac{2+h-2}{h(\sqrt{2+h} + \sqrt{2})}$$

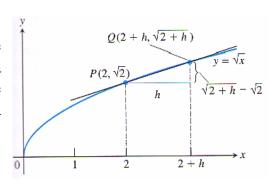
$$= \frac{h}{h(\sqrt{2+h} + \sqrt{2})}$$
Fator comum de h .

$$= \frac{1}{\sqrt{2+h} + \sqrt{2}}.$$
Cancelar h para $h \neq 0$

$$\lim_{h \to 0} \frac{\sqrt{2+h} - \sqrt{2}}{h} = \lim_{h \to 0} \frac{1}{\sqrt{2+h} + \sqrt{2}}$$

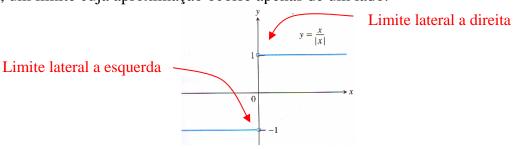
$$= \frac{1}{\sqrt{2+0} + \sqrt{2}}$$
Denominador diferente de 0 em $h = 0$; substituir.
$$= \frac{1}{2\sqrt{2}}.$$

Obs. vemos nesse caso que h é o coeficiente angular da secante nos pontos $P(2,\sqrt{2})$ e $Q(2+h,\sqrt{2}+h)$ na curva $y=\sqrt{x}$). Nossa resolução mostra que $1/2\sqrt{2}$ é o valor limite desse coeficiente angular, fazendo $Q \rightarrow P$ ao longo da curva de cada lado.



5) Limites laterais

Para ter um limite \mathbf{L} quando \mathbf{x} se aproxima de a, uma função $\mathbf{f}(\mathbf{x})$ deve ser definida em ambos os lados de a e seus valores $\mathbf{f}(\mathbf{x})$ devem se aproximar de \mathbf{L} quando \mathbf{x} se aproxima de a de cada lado. Por isso, limites comuns são bilaterais. Se $\mathbf{f}(\mathbf{x})$ não tem um limite bilateral em a, ainda pode ter um limite latera ou seja, um limite cuja aproximação ocorre apenas de um lado.



Definicões Limites Laterais à Direita e à Esquerda

Seja f(x) definida em um intervalo (a, b), onde a < b. Se f(x) fica arbitrariamente próximo de L conforme x se aproxima de a nesse intervalo, dizemos que f tem limite lateral à direita L em a e escrevemos

$$\lim_{x \to a^+} f(x) = L \,.$$

Seja f(x) definida em um intervalo (c, a), onde c < a. Se f(x) fica arbitrariamente próximo de M conforme x se aproxima de a nesse intervalo, dizemos que f tem limite lateral à esquerda M em a e escrevemos

$$\lim_{x \to a^{-}} f(x) = M.$$

Exemplo 8: Limites laterais para um semicírculo.

O domínio de $f(x) = \sqrt{4 - x^2}$ é [-2, 2]; seu gráfico é um semicírculo

$$y = \sqrt{4 - x^2}$$

$$\lim_{x \to -2^+} \sqrt{4 - x^2} = 0$$

$$\lim_{x \to -2^+} \sqrt{4 - x^2} = 0 \qquad \text{e} \qquad \lim_{x \to 2^+} \sqrt{4 - x^2} = 0.$$

A função não tem um limite pela esquerda em x = -2 ou pela direita em x = 2. A função não tem limites bilaterais em -2 ou 2.

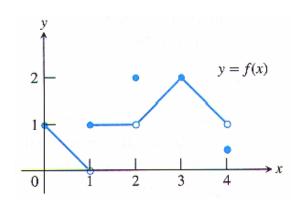
Relação entre os Limites Lateral e Bilateral Teorema 5

Uma função f(x) terá um limite quando x se aproximar de c se e somente se tiver um limite lateral à direita e um à esquerda e os dois limites laterais forem iguais:

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{-}} f(x) = L \quad \text{e} \quad \lim_{x \to c^{+}} f(x) = L.$$

Este símbolo significa "se e somente se"

Exemplo 9: Limites da função da função abaixo



$$\text{Em } x = 0$$
: $\lim_{x \to 0^+} f(x) = 1$,

 $\lim_{x\to 0^-} f(x)$ e $\lim_{x\to 0} f(x)$ não existem. A função não é definida à esquerda de x = 0.

Em
$$x = 1$$
: $\lim_{x \to 1^{-}} f(x) = 0$ ainda que $f(1) = 1$,

$$\lim_{x\to 1^+} f(x) = 1,$$

 $\lim_{x\to 1} f(x)$ não existe. Os limites à direita e à esquerda não são iguais.

$$\text{Em } x = 2$$
: $\lim_{x \to 2^{-}} f(x) = 1$,

$$\lim_{x\to 2^+} f(x) = 1,$$

$$\lim_{x\to 2} f(x) = 1 \text{ ainda que } f(2) = 2.$$

Em
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3} f(x) = f(3) = 2$.

Em
$$x = 4$$
: $\lim_{x \to 4^{-}} f(x) = 1$ ainda que $f(4) \neq 1$,

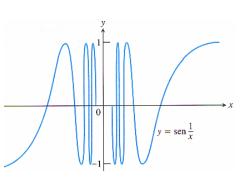
 $\lim_{x\to 4^+} f(x)$ e $\lim_{x\to 4^-} f(x)$ não existem. A função não é definida à direita de x = 4.

Em qualquer outro ponto a em [0, 4], f(x) tem limite f(a).

Exemplo 10: Limites de uma função que oscila demais

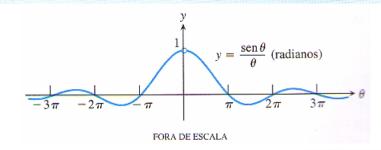
Mostre que $y = \operatorname{sen}\left(\frac{1}{x}\right)$ não tem nenhum limite lateral quando x se aproxima de zero de ambos os lados (Figura 1.23).

Solução Conforme x se aproxima de zero, seu recíproco, $\frac{1}{x}$, cresce sem limitação e os valores de sen $\left(\frac{1}{x}\right)$ repetem-se ciclicamente de -1 a 1. Não há nenhum número L do qual os valores da função vão ficando cada vez mais próximos conforme x tende a zero, o que é válido mesmo quando restringimos x a valores positivos ou negativos. A função não tem limite à direita nem à esquerda em x=0.



Teorema 6

$$\lim_{\theta \to 0} \frac{\operatorname{sen} \theta}{\theta} = 1 \qquad (\theta \operatorname{em radianos})$$



Exemplo 11: Usando o teorema 6 e obtendo limites da funções: (a) $\lim_{h\to 0} \frac{\cos h - 1}{h}$ e (b) $\lim_{x\to 0} \frac{\sin 2x}{5x}$

Solução

(a) Usando a fórmula $\cos h = 1 - 2 \sin^2 (h/2)$, calculamos

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} -\frac{2 \operatorname{sen}^{2}(h/2)}{h}$$

$$= -\lim_{\theta \to 0} \frac{\operatorname{sen} \theta}{\theta} \operatorname{sen} \theta \qquad \text{Seja } \theta = h/2.$$

$$= -(1)(0) = 0.$$

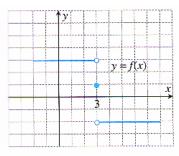
(b) A equação (1) não se aplica à fração original. Precisamos de 2x no denominador, e não 5x. Produzimos o 2x multiplicando numerador e denominador por 2/5:

$$\lim_{x \to 0} \frac{\sec 2x}{5x} = \lim_{x \to 0} \frac{(2/5) \cdot \sec 2x}{(2/5) \cdot 5x}$$

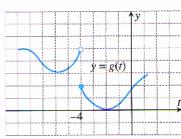
$$= \frac{2}{5} \lim_{x \to 0} \frac{\sec 2x}{2x}$$
Agora a equação (1) se aplica a $\theta = 2x$.
$$= \frac{2}{5} (1) = \frac{2}{5}$$

Exercícios de fixação

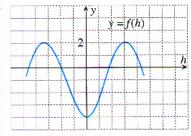
1) Utilize os gráficos abaixo para estimar os limites e os valores das funções ou explique por que os limites não existem.



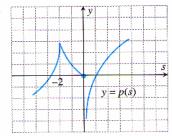
- (a) $\lim_{x\to a^-} f(x)$
- **(b)** $\lim_{x \to 3^-} f(x)$
- (c) $\lim_{x \to a} f(x)$
- **(d)** f(3)



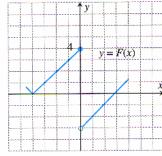
- (a) $\lim_{t\to -1^-} g(t)$
- **(b)** $\lim_{t \to -4^+} g(t)$ **(c)** $\lim_{t \to -4} g(t)$ **(d)** g(-4)



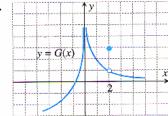
- **(b)** $\lim_{h\to 0} f(h)$ **(c)** $\lim_{h\to 0} f(h)$
- (**d**) f(0)



- **(b)** $\lim_{s \to -2} p(s)$ **(c)** $\lim_{s \to -2} p(s)$ **(d)** p(-2)



- **(b)** $\lim_{x\to 0^+} F(x)$ **(c)** $\lim_{x\to 0} F(x)$
- (d) F(0)



- (a) $\lim_{x\to 2^-} G(x)$
- **(b)** $\lim_{x \to 2} G(x)$ **(c)** $\lim_{x \to 2} G(x)$
- (d) G(2)

- 2) Suponha que $\lim_{x\to c} f(x) = 5$ e $\lim_{x\to c} g(x) = -2$. Determine:

- (a) $\lim_{x \to c} f(x)g(x)$ (b) $\lim_{x \to c} 2f(x)g(x)$ (c) $\lim_{x \to c} (f(x) + 3g(x))$ (d) $\lim_{x \to c} \frac{f(x)}{f(x) g(x)}$
- 3) Suponha que $\lim_{x\to 4} f(x) = 0$ e $\lim_{x\to 4} g(x) = -3$. Determine:
 - (a) $\lim_{x\to 4} (g(x) + 3)$
- **(b)** $\lim_{x\to 4} xf(x)$
- (c) $\lim_{x\to 4} (g(x))^2$
- 4) Resolva os limites laterais abaixo:
 - a) $\lim_{x \to -0.5^{-}} \sqrt{\frac{x+2}{x+1}}$
 - b) $\lim_{x \to -2^+} \left(\frac{x}{x+1} \right) \left(\frac{2x+5}{x^2+x} \right)$
 - c) $\lim_{h \to 0^-} \frac{\sqrt{h^2 + 4h + 5} \sqrt{5}}{h}$

5) Por causa de sua conexão com retas secantes, tangentes e taxas de variação instantâneas, os limites da forma

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

ocorrem frequentemente em cálculo. Calcule o limite para x_0 e f(x) dados abaixo:

a)
$$f(x) = x^2$$
, $x_0 = 1$

b)
$$f(x) = 3x - 4$$
, $x_0 = 2$

c)
$$f(x) = 1/x$$
, $x_0 = -2$

d)
$$f(x) = \sqrt{x}, \quad x_0 = 7$$