DATABASE and NKABS code

We present here a Database about the spectroscopy of Astrophysical ices in the infrared including refractive index from the LASA laboratory and associated laboratories (LNLS, GANIL, PUC-RIO). This Database is presented in two groups: 1- Unirradiated ices and 2- processed ices by coscmic-ray analogs. Future databases will also cover X-ray and electron bombardment data.

Additonaly, we also present a code for the determination of optical constants (complex refractive index) of thin films directly from the absorbance data in the infrared, called NKABS. The code is written in the Python language, being more accurated and faster than previous methods in the literature. For solving the Kramers-Kronig relationship, we used the Maclaurin's methodoly. Unlike other codes, which found convergence in 30 to 40 iterations, the NKABS reach the convergence in just 4 or 5 iterations. Additionally, to evaluate the error, this code calculates the MAPE (Mean Absolute Percentage Error) and the chi-square χ2. The typical MAPE error obtained using NKABS is less than 1 x 10-3%. The code is available on-line as well as the data base obtained here. The NKABS can be also employed for the calculation refractive index of processed samples (by heating or radiation). Such data, as well as the the refractive index of virgin samples, are needed as input in several astrophysical models that calculates the radiative transfer in dusty astrophysical environments such as protoplanetary disks and circunstellar environments as well dense molecular clouds.The first version of the code was developed during the PhD thesis of Will Robson in 2013.

The original paper can be obtained here:

 

DATABASE 1: UNIRRADIATED FTIR spectra (absorbance) and optical constants (m=n+ik) of astrophysical ices and thin films.

Data Label Temp (K)

Sample (IR Absorbance and optical constants)

Reference/notes
G1 10 CO Rocha & Pilling (2014), Ehrenfreund et al. 1999
G2 13 CO2 Rocha & Pilling (2014), Pilling et al. 2010b
G3 14 NH3 Rocha & Pilling (2014), Pilling et al. 2012
G4 12 SO2 Rocha & Pilling (2014)
S1 300 alpha-glycine Rocha & Pilling (2014), Pilling et al. 2011
S2 14 alpha-gycine Rocha & Pilling (2014), Portugal et al. 2013
S3 300 beta-glycine Rocha & Pilling (2014), Pilling et al. 2013
S4 300 DL-proline Rocha & Pilling (2014), Pilling et al. 2011
S5 300 DL-valine Rocha & Pilling (2014), Pilling et al. 2011
S6 300 adenine Rocha & Pilling (2014), Pilling et al. 2011
S7 300 uracil Rocha & Pilling (2014), Pilling et al. 2011
L1 12 H2O (amorphous) Rocha & Pilling (2014)
L2 165 H2O (crystalline) Rocha & Pilling (2014)
L3 12 acetone Rocha & Pilling (2014)
L4 12 acetonirtile Rocha & Pilling (2014)
L5 12 acetic acid Rocha & Pilling (2014)
L6 12 formic acid Rocha & Pilling (2014)
L7 12 ethanol Rocha & Pilling (2014)
L8 12 methanol Rocha & Pilling (2014)
L9 13 cycle-hexane Rocha & Pilling (2014), Pilling et al. 2012
M1 12 Titan aerosol - N2CH4 (19:1) Rocha & Pilling (2014)
M2 13  H2O:CO2 (9:1) Rocha & Pilling (2014), Pilling et al. 2010b
M3 13  H2O:CO2 (1:1) Rocha & Pilling (2014), Pilling et al. 2010b
M4 13 H2O:HCOOH (1:1) Rocha & Pilling (2014), Bergantini et al 2013
M5 13 H2O:NH3:CO (1:0.5:0.4) Rocha & Pilling (2014), Pilling et al. 2010a
M6 14 H2O:NH3:c-C6H12 (1:0.3:0.7) Rocha & Pilling (2014), Pilling et al. 2012
M7 80 Enceladus - H2O:CO2:NH3:CH4 (9:1:1:1) Rocha & Pilling (2014)
M8 90 Europa -H2O:CO2:NH3:SO2 (10:1:1:1) Rocha & Pilling (2014)
       

OBS: G# films from condensed gaseous samples, S# films from solid samples,L# films frozen thin films from evaporated liquid samples in vaccum, M# films from mixed samples.

 

DATABASE 2 : FTIR spectra (absorbance) and optical constants (m=n+ik) of bombarded astrophysical ices and thin films by heavy ions. NEW!!!!

OBS1: A free version of the paper can be download at: https://arxiv.org/abs/1609.04684

OBS2: MNRAS DOI: 10.1093/mnras/stw2398

Data Label

Temp (K)

Sample (IR absorbance and optical constants)

Projectile

Flucence

(x1010 ions cm-2)

References / Notes

D1a

13

H2O:CO2 (1:1)

52 MeV 58Ni13+

0

Rocha et al. (2016); Pilling et al. (2010b)

D1b

13

H2O:CO2 (1:1)

52 MeV 58Ni13+

100

Rocha et al. (2016); Pilling et al. (2010b)

D1c

13

H2O:CO2 (1:1)

52 MeV 58Ni13+

1000

Rocha et al. (2016); Pilling et al. (2010b)

D2a

13

H2O:CO2 (10:1)

52 MeV 58Ni13+

0

Rocha et al. (2016); Pilling et al. (2010b)

D2b

13

H2O:CO2 (10:1)

52 MeV 58Ni13+

100

Rocha et al. (2015); Pilling et al. (2010b)

D2c

13

H2O:CO2 (10:1)

52 MeV 58Ni13+

500

Rocha et al. (2016); Pilling et al. (2010b)

D3a

16

H2O:CH4 (1:0.6)

40 MeV 58Ni11+

0

Rocha et al. (2016); de Barros et al. (in prep)

D3b

16

H2O:CH4 (1:0.6)

40 MeV 58Ni11+

100

Rocha et al. (2016); de Barros et al. (in prep)

D3c

16

H2O:CH4 (1:0.6)

40 MeV 58Ni11+

1000

Rocha et al. (2016); de Barros et al. (in prep)

D4a

16

H2O:CH4 (10:0.6)

40 MeV 58Ni11+

0

Rocha et al. (2016); de Barros et al. (in prep)

D4b

16

H2O:CH4 (10:0.6)

40 MeV 58Ni11+

100

Rocha et al. (2016); de Barros et al. (in prep)

D4c

16

H2O:CH4 (10:0.6)

40 MeV 58Ni11+

1000

Rocha et al. (2016); de Barros et al. (in prep)

D5a

13

H2O:NH3 (1:0.5)

46 MeV 58Ni13+

0

Rocha et al. (2016); Pilling et al. (2010a)

D5b

13

H2O:NH3 (1:0.5)

46 MeV 58Ni13+

100

Rocha et al. (2016); Pilling et al. (2010a)

D5c

13

H2O:NH3 (1:0.5)

46 MeV 58Ni13+

1600

Rocha et al. (2016); Pilling et al. (2010a)

D6a

15

H2O:HCOOH (1:1)

46 MeV 58Ni11+

0

Rocha et al. (2016); Bergantini et al. (2014)

D6b

15

H2O:HCOOH (1:1)

46 MeV 58Ni11+

100

Rocha et al. (2016); Bergantini et al. (2014)

D6c

15

H2O:HCOOH (1:1)

46 MeV 58Ni11+

1000

Rocha et al. (2016); Bergantini et al. (2014)

D7a

15

H2O:CH3OH (1:1)

40 MeV 58Ni11+

0

Rocha et al. (2016); de Barros et al. (2014b)

D7b

15

H2O:CH3OH (1:1)

40 MeV 58Ni11+

100

Rocha et al. (2016); de Barros et al. (2014b)

D7c

15

H2O:CH3OH (1:1)

40 MeV 58Ni11+

1000

Rocha et al. (2016); de Barros et al. (2014b)

D8a

13

H2O:NH3:CO (1:0.6:0.4)

46 MeV 58Ni13+

0

Rocha et al. (2016); Pilling et al. (2010a)

D8b

13

H2O:NH3:CO (1:0.6:0.4)

46 MeV 58Ni13+

100

Rocha et al. (2016); Pilling et al. (2010a)

D8c

13

H2O:NH3:CO (1:0.6:0.4)

46 MeV 58Ni13+

2000

Rocha et al. (2016); Pilling et al. (2010a)

D9a

13

H2O:NH3:c-C6H6 (1:0.3:0.7)

632 MeV 58Ni24+

0

Rocha et al. (2016); Pilling et al. (2012)

D9b

13

H2O:NH3:c-C6H6 (1:0.3:0.7)

632 MeV 58Ni24+

200

Rocha et al. (2016); Pilling et al. (2012)

D9c

13

H2O:NH3:c-C6H6 (1:0.3:0.7)

632 MeV 58Ni24+

3000

Rocha et al. (2016); Pilling et al. (2012)

D10a

72

H2O:CO2:CH4 (10:1:1)

15.7 MeV 16O5+

0

Rocha et al. (2016); Pilling et al. (in prep.)

D10b

72

H2O:CO2:CH4 (10:1:1)

15.7 MeV 16O5+

10

Rocha et al. (2016); Pilling et al. (in prep.)

D10c

72

H2O:CO2:CH4 (10:1:1)

15.7 MeV 16O5+

100

Rocha et al. (2016); Pilling et al. (in prep.)

D11a

15

H2O:H2CO:CH3OH (100:0.2:0.8)

220 MeV 16O7+

0

Rocha et al. (2016); de Barros et al. (2014a)

D11b

15

H2O:H2CO:CH3OH (100:0.2:0.8)

220 MeV 16O7+

1700

Rocha et al. (2016); de Barros et al. (2014a)

D11c

15

H2O:H2CO:CH3OH (100:0.2:0.8)

220 MeV 16O7+

9600

Rocha et al. (2016); de Barros et al. (2014a)

D12a

35

H2O:NH3:CO2:CH4 (10:1:1:1)

15.7 MeV 16O5+

0

Rocha et al. (2016); Pilling et al. (in prep.)

D12b

35

H2O:NH3:CO2:CH4 (10:1:1:1)

15.7 MeV 16O5+

10

Rocha et al. (2016); Pilling et al. (in prep.)

D12c

35

H2O:NH3:CO2:CH4 (10:1:1:1)

15.7 MeV 16O5+

100

Rocha et al. (2016); Pilling et al. (in prep.)

D13a

72

H2O:NH3:CO2:CH4 (10:1:1:1)

15.7 MeV 16O5+

0

Rocha et al. (2016); Pilling et al. (in prep.)

D13b

72

H2O:NH3:CO2:CH4 (10:1:1:1)

15.7 MeV 16O5+

10

Rocha et al. (2016); Pilling et al. (in prep.)

D13c

72

H2O:NH3:CO2:CH4 (10:1:1:1)

15.7 MeV 16O5+

100

Rocha et al. (2016); Pilling et al. (in prep.)

Grupo de Pesquisa em AstroquĂ­mica e Astrobiologia - GAA

 


Last update 30/09/2016