

Introduction to Vacuum Technology

Rafael M. Seraphim (rafael.seraphim@lnls.br) LNLS Vacuum Group

Contents

- Vacuum basics
- Vacuum system:
 - Valves
 - Pumps
 - Gauges
- Examples of vacuum systems
- Final remarks

Why vacuum?

Why vacuum?

Free path to minimize collisions

Why vacuum?

Free path to minimize collisions

Clean environment to run an experiment or simulate a specific environment

Why vacuum?

Free path to minimize collisions

Clean environment to run an experiment or simulate a specific environment

What is the target pressure (P) or tolerable molecular density (n)?

According to Ideal Gas Law P = n K T

Pressure P [Pa] Gas density n [molecules/m³] Boltzman constant k [J/K] = 1.38 10⁻²³ Temperature T [K]

Classification of vacuum ranges

	Pressure range [mbar]	Molecular Density n at 293 K [cm ⁻³]
Low Vacuum LV	10 ³ -1	10 ¹⁹ -10 ¹⁶
Medium Vacuum MV	1-10 ⁻³	10 ¹⁶ -10 ¹³
High Vacuum HV	10 ⁻³ -10 ⁻⁹	10 ¹³ -10 ⁷
Ultra High vacuum UHV	10 ⁻⁹ -10 ⁻¹²	10 ⁷ -10 ⁴
Extreme High Vacuum XHV	<10 ⁻¹²	<104

d

Flow regimes in vacuum

Pressure p

10³ mbar

Gas flow in vacuum can be described by the simple equation:

Gas flow in vacuum can be described by the simple equation:

Conductance calculation in molecular regime

For simple geometry the conductance can be calculated by simple eqs.:

For an orifice:

$$C_{air,20^{\circ}C} = 11.6 A$$

Conductance C [l/s] Orifice area A [cm²]

For exemple, the conductance of an orifice of 4 cm is: **146 l/s**

-2

For a tube:

$$C_{air,20^{\circ}C} = 12.1 \frac{d^{3}}{L}$$

Conductance C [l/s] Tube diameter d [cm] Tube length L [cm]

For exemple, the conductance of a tube with diameter of 4 cm and length of 10 cm is: **77.5 l/s**

Conductance calculation in molecular regime

For complex geometry the conductance can be calculated by:

Based on Test-Particle Monte Carlo method (TPMC), which calculates a large number of molecular trajectories to have a picture of a rarefied gas flow.

A test-particle Monte-Carlo simulator for ultra-high-vacuum systems

http://cern.ch/test-molflow

R. Kersevan and J.-L. Pons, JVST A 27(4) 2009, p1017

Calculating the pressure in vacuum chambers

Calculating the pressure in vacuum chambers

To lower the pressure in the chamber there are only two approaches:

Calculating the pressure in vacuum chambers

To lower the pressure in the chamber there are only two approaches:

Calculating the pressure in vacuum chambers

To lower the pressure in the chamber there are only two approaches:

or $\mathbf{V} \mathbf{Q}$

Calculating the pressure in vacuum chambers

To lower the pressure in the chamber there are only two approaches:

Conductance between the pump and the chamber

The design of the chamber, how the pumps will be connected and the size of pumps are a compromise that must be analyzed.

Conductance between the pump and the chamber

Vacuum system

Vacuum system

Vacuum system: valves

All metal right angle valves:

Vacuum system

Vacuum system

Vacuum system:

pumps

Vacuum system

Vacuum system

Vacuum system:

gauges

Examples of vacuum systems

- Vacuum technology is interdisciplinary and correlates with other areas;
- A vacuum system must fabricated following a well defined flow:

Thank you for your attention!

Questions???