ASAI+ANALYSIS

HC₃N: CHEMISTRY

CONCLUSION O

Detection of cyanopolyynes in the protostellar shock L1157-B1

Edgar Mendoza IAG/USP, São Paulo

B. Lefloch, C. Ceccarelli, A. Al-Edhari, J. Lepine, C. Codella, L. Podio, S. Viti, H. M. Boechat-Roberty, C. Kahane, R. Bachiller, M. Benedettini

International Symposium and Workshop on Astrochemistry Campinas 07/07/2016

HC₃N: CHEMISTRY 0000000

CONCLUSION O

HC3N: CHEMISTRY

CONCLUSION O

Index

Cyanopolyynes in interstellar conditions

ASAI: Line identification

Formation of HC₃N in L1157-B1

Summarizing

CONCLUSION O

Cyanopolyynes in interstellar conditions

Bell et al. (1997) determined a decrement between successive cyanopolyynes in TMC-1

1971: HC3N, Sgr 1971

1976: HC5N, Sgr B2

1978: HC7N, TMC-2

1978, HC9N ISM

1997, HC11N, TMC-1

Synthesis starting with small precursors $C_2H_2^+$, HCN, C_2H , HNC Freeman et al. (1978) $\rightarrow \rightarrow 20$

ASAI+ANALYSIS	HC3N: CHEMISTRY	CONCLU
000000	000000	0

The source: L1157-B1 L1157-mm is a low-mass Class 0 protostar (\sim 250 pc)

(left) Santangelo et al. 2013 (right) Map of L1157-B1 with HC3N J=16-15

L1157-B1, the brightest shock, is located at the second cavity in the south hemisphere L1157-B1 is a young object, its dynamical age is ~ 4000 yr Several chemical species have been observed at mm wavelengths: H₂CO, CH₃OH, NH₂CHO, CH₃CN, H₂S... Interferometric image of L1157-B1 HC₃N J=16-15 (3.5 \times 2.3 arcsec) Bachiller et al. (2001); Lefloch et al. (2012); Benedettini et al. (2013); Podio et al. (2014)

HC3N: CHEMISTRY

CONCLUSION O

The source: L1157-B1

Physical components in B1

- $g_1: T_{kin} \approx 250$ K
- $g_2: T_{kin} \approx$ 70 K
- $g_3: T_{kin} \approx$ 25 K

ASAI+ANALYSIS

HC3N: CHEMISTRY

CONCLUSION O

Cyanopolyynes in interstellar conditions

ASAI: Line identification

Formation of HC₃N in L1157-B1

Summarizing

HC3N: CHEMISTRY

CONCLUSION O

The ASAI large program

Astrochemical Surveys At Iram: 350 hours of observation at IRAM-30m (PIs: Lefloch & Bachiller 2014) Sources: Samples that cover all the evolutionary phases of solar type protostars

Frequencies observed through ASAI: 3 mm: 80 - 116 GHz 2 mm: 130 - 170 GHz 1.3 mm: 200 - 320 GHz 0.8 mm: 329 - 350 GHz

Data reduction: Systematic study of HCN, HC_3N and HC_5N

The data reduction was performed using the GILDAS/CLASS90 package.

http://www.iram.fr/IRAMFR/GILDAS/

The CDMS and JPL spectroscopy databases were used to identify lines

http://www.astro-uni-koel.de/cgi-bin/cdmssearch
http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html

The telescope and receiver paramenters:

http://www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies

HC3N: CHEMISTRY

CONCLUSION O

Detection of HC_3N and HC_5N

 HC_3N

• Cold component

from HC₃N J=8-7 to J=19-18 $T_{rot} =$ 16 K N = 3 \pm 1 \times 10¹³ cm⁻²

• Hot component

from HC₃N J=23-22 to J=32-31 $T_{rot} = 48$ K $N = 6 \pm 2 \times 10^{12}$ cm⁻²

HC3N: CHEMISTRY

CONCLUSION O

Detection of HC_3N and HC_5N

 HC_5N

• Cold component from HC₃N J=8-7 to J=19-18 $T_{rot} =$ 16 K N = 3 \pm 1 \times 10¹³ cm⁻²

• Hot component from HC₅N J=36-35 to J=42-41 $T_{rot} \approx$ 110 K N = 9 \times 10¹¹ cm⁻²

<ロ> (日) (日) (日) (日) (日)

HC3N: CHEMISTRY

Spectral line profile

The high sensitivity of ASAI allowed to analyse the line profiles of HCN J=3-2, HCN J=1-0 and $\rm H^{13}CN$ J=2-1

$$I(v) \propto \exp\left(\left|\frac{v}{v_0}\right|\right)$$

$$\begin{split} v_0 &\simeq \mbox{12 km/s} \\ v_0 &\simeq \mbox{4 km/s} \\ v_0 &\simeq \mbox{2 km/s} \\ \mbox{Lefloch et al. (2012)} \\ \mbox{Gómez-Ruiz et al. (2015)} \end{split}$$

Physical components

- 1. Component g1: $T_k = 210$ K, $N(CO) = 9 \times 10^{15}$ cm⁻², size $\approx 10^{\prime\prime}$
- 2. Component g2: $T_k = 64 \text{ K, } N(\text{CO}) = 9 \times 10^{16} \text{ cm}^{-2}, \text{ size } \approx 20^{\prime\prime}$
- 3. Component g3: $T_k = 23 \text{ K}, N(\text{CO}) = 1 \times 10^{17} \text{ cm}^{-2}, \text{ size } \approx 25^{\prime\prime}$

HC_3N isotopologues in B1: a subtle evidence

H ¹³ CCCN	Freq	HC ¹³ CCN	Freq	HCC ¹³ CN	Freq
J	MHz	J	MHz	J	MHz
10-9	88166	9-8	81534	10-9	90601
11-10	96983	10-9	90593	11-10	99661
12-11	105799	11-10	99651	12-11	108720
		12-11	108710		

HC3N: CHEMISTRY

CONCLUSION O

Molecular abundances (preliminary results)

Abundances derived from LTE and LVG calculations

Component	T _{kin}	n(H ₂)	N(CO)	[HCN]	[HNC]	[HC ₃ N]	[HC ₅ N]
	(K)	$10^{6} {\rm cm}^{-3}$	$10^{16} {\rm cm}^{-2}$	10^{-8}	10^{-8}	10^{-8}	10^{-8}
g1	200-300	0.8-1.5	0.48	42	-	-	-
g2	50-70	0.1-1	7.0	69	0.19	1.3	0.13
g3	\lesssim 30	0.2-0.3	8.8	3.4	1.7	3.8	0.34

Next step: chemistry

- 1. What kind of processes govern the HC_3N formation?
- 2. Can we find a match between the observations and chemical models?
- 3. Task: Chemical modelling of the physical components of B1

ASAI+ANALYSIS

HC3N: CHEMISTRY

CONCLUSION O

Cyanopolyynes in interstellar conditions

ASAI: Line identification

Formation of HC_3N in L1157-B1

Summarizing

CONCLUSION O

Chemical modelling: Formation of HC₃N

Phases

Nahoon (Wakelam et al. 2012) was employed to compute the chemical abundances of HC3N and its precursors as a function of time.

- Dark-cloud conditions: T=10 K, $A_{\rm v}\geq$ 10 mag, $n({\rm H_2}){\simeq}10^4$ cm^{-3}, $\zeta=$ 3 \times $10^{-16}~{\rm s}^{-1}$
- High temperature phase: $T \leq 3000$ K, $A_v \geq$ 5-10 mag, $n({
 m H_2}){\simeq}10^5$ cm $^{-3}$
- Physical conditions of g2: $T \leq 70$ K and $A_{v} \geq$ 5-10 mag

Specie	Abundance	
He	0.14	
N	$7.4~ imes~10^{-5}$	
0	$3.52~ imes~10^{-4}$	
C^+	1.46 $ imes$ 10 $^{-4}$	
S^+	1.60 $ imes$ 10 $^{-7}$	
\mathtt{Si}^+	1.60 $ imes$ 10 ⁻⁸	- Abr
${\tt Fe}^+$	$6.0~ imes~10^{-9}$	107
\mathtt{Na}^+	4.0 $ imes$ 10 $^{-9}$	
Mg^+	1.4 $ imes$ 10 ⁻⁸	
		$10^1 10^2 10^3 10^4 10^5 10^6 10^7$
		Time (vr)

Initial abundances

Chemistry in the physical component g_2

1 st Step	2 nd Step
Chemistry	
Elemental abundances	Abundanes in steady-state
e.g. Podio et al. 2014; Wakelam & Herbst 2008	$(t = 1 \times 10^{6} \text{ yr})$
Physics	
$n(H) = 2 \times 10^4 \text{ cm}^{-3}$	$n(H) = 1 \times 10^5 \text{ cm}^{-3}$
T = 10 K	T = 70 K
$A_v = 10 \text{ mag}$	$A_v = 10 \text{ mag}$
$\xi = 1-3 \times 10^{-17} \text{ s}^{-1}$	ξ = 1-3 \times 10 ⁻¹⁶ s ⁻¹

æ

1NTRU 000

1 st Step	2 nd Step
Chemistry	
Elemental abundances	Abundanes in steady-state
e.g. Podio et al. 2014; Wakelam & Herbst 2008	$(t = 1 \times 10^{6} \text{ yr})$
Physics	
$n(H) = 2 \times 10^4 \text{ cm}^{-3}$	$n(H) = 1 \times 10^5 \text{ cm}^{-3}$
T = 10 K	T = 70 K
$A_v = 10 \text{ mag}$	$A_v = 10 \text{ mag}$
$\xi = 1-3 \times 10^{-17} \text{ s}^{-1}$	$\xi = 1-3 \times 10^{-16} \text{ s}^{-1}$

1NTRU 000

1 st Step	2 nd Step
Chemistry	
Elemental abundances	Abundanes in steady-state
e.g. Podio et al. 2014; Wakelam & Herbst 2008	$(t = 1 \times 10^{6} \text{ yr})$
Physics	
$n(H) = 2 \times 10^4 \text{ cm}^{-3}$	$n(H) = 1 \times 10^5 \text{ cm}^{-3}$
T = 10 K	T = 70 K
$A_v = 10 \text{ mag}$	$A_v = 10 \text{ mag}$
$\xi = 1-3 \times 10^{-17} \text{ s}^{-1}$	$\xi = 1-3 \times 10^{-16} \text{ s}^{-1}$

1 st Step	2 nd Step
Chemistry	
Elemental abundances	Abundanes in steady-state
e.g. Podio et al. 2014; Wakelam & Herbst 2008	$(t = 1 \times 10^{6} \text{ yr})$
Physics	
$n(H) = 2 \times 10^4 \text{ cm}^{-3}$	$n(H) = 1 \times 10^5 \text{ cm}^{-3}$
T = 10 K	T = 70 K
$A_v = 10 \text{ mag}$	$A_v = 10 \text{ mag}$
$\xi = 1-3 \times 10^{-17} \text{ s}^{-1}$	$\xi = 1-3 \times 10^{-16} \text{ s}^{-1}$

HC₃N: CHEMISTRY 00●0000 CONCLUSION O

HC₃N: CHEMISTRY 000●000 CONCLUSION O

High temperature phase

We kept the physical conditions **except** temperature. Models including:

T = 1000 KT = 2000 KT = 3000 K

(日) (四) (三) (三)

ASAI+ANALYSIS

HC₃N: CHEMISTRY 000●000 CONCLUSION O

High temperature phase

We kept the physical conditions **except** temperature. Models including:

T = 1000 KT = 2000 KT = 3000 K

HC₃N: CHEMISTRY 0000●00 CONCLUSION O

Reactions working at high temperature

æ

▲ロト ▲圖ト ▲屋ト ▲屋ト

HC₃N: CHEMISTRY 00000●0 CONCLUSION O

Sputtering of CH₄

Sakai et al. 2012; Codella et al. 2015 Large quantities of CH4 have been found around L1157-mm $X({\rm CH4})\,\simeq\,0.4\text{--}1.5\times\,10^{-5}$

What is the influence on the abundances when is injected CH4?

HC₃N: CHEMISTRY 00000●0 CONCLUSION O

Sputtering of CH₄

Sakai et al. 2012; Codella et al. 2015 Large quantities of CH4 have been found around L1157-mm $X({\rm CH4})\,\simeq\,0.4\text{-}1.5\times\,10^{-5}$

What is the influence on the abundances when is injected CH4?

<ロ> (日) (日) (日) (日) (日)

ASAI+ANALYSI

HC₃N: CHEMISTRY 000000●

CONCLUSION O

Sputtering of CH₄

11	VINU
	00

Cyanopolyynes in interstellar conditions

ASAI: Line identification

Formation of HC₃N in L1157-B1

Summarizing

Summarizing

- \checkmark We confirmed through ASAI/IRAM-30m the presence of HC_3N and HC_5N in L1157-B1
- \checkmark Detection of HC_3N from J=9-8 to J=32-31, HC_5N from J=32-31 to J=43-42.
- \checkmark The spectral line profiles of HNC J=1-0, HCN J=1-0 and HC₃N = 9-8 evidenced the contribution of the g2 and g3 physical components, as reported by Lefloch et al. 2012 and Gómez-Ruiz et al. 2015

Component	T _{kin}	N(CO)*	[HCN]	[HNC]	[HC ₃ N]	[HC ₅ N]
-	(K)	10^{16} cm $^{-2}$	10 ⁻⁸	10^{-8}	10^{-8}	10^{-8}
g1	200-300	0.48	42			
g2	50-70	7.0	69	0.19	1.3	0.13
g3	\lesssim 30	8.8	3.4	1.7	3.8	0.34

CONCLUSION

Summarizing

- \checkmark We confirmed through ASAI/IRAM-30m the presence of HC_3N and HC_5N in L1157-B1
- \checkmark Detection of HC_3N from J=9-8 to J=32-31, HC_5N from J=32-31 to J=43-42.
- \checkmark The spectral line profiles of HNC J=1-0, HCN J=1-0 and HC₃N = 9-8 evidenced the contribution of the g2 and g3 physical components, as reported by Lefloch et al. 2012 and Gómez-Ruiz et al. 2015

Component	T _{kin}	N(CO)*	[HCN]	[HNC]	[HC ₃ N]	[HC ₅ N]
-	(K)	$10^{16}~{ m cm}^{-2}$	10^{-8}	10^{-8}	10^{-8}	10^{-8}
g1	200-300	0.48	42			
g2	50-70	7.0	69	0.19	1.3	0.13
g3	\lesssim 30	8.8	3.4	1.7	3.8	0.34

Universidade do Vale do Paraíba

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

