Ionization-driven star formation: the case of IR bubble N10

Diana Gama¹

J. Lépine¹, B. Lefloch², E. Mendoza^{1,2}

¹IAG/USP, ²IPAG/Univ. Grenoble Alpes

diana.gama@usp.br

July 6th, 2016

Overview

Introduction

- Infrared Bubbles 2
- 3 Star Formation in IR Bubbles
- The Bubble N10 (4)
- 5 Molecular tracers of star formation

Perspectives 6

- - E

< A > < > > <

Introduction

Introduction

Interstellar Medium

Table: Properties of molecular clouds, clumps and cores.

	Molecular	Clumps Pre/protostellar	
	Clouds		Cores
Size (pc)	2–15	0.3–3	0.03-0.2
Density (cm^{-3})	50–500	$10^{3}-10^{4}$	$10^{4} - 10^{5}$
Mass (M_{\odot})	$10^{3}-10^{4}$	50-500	0.5–5
Temperature (K)	${\sim}10$	10-20	8–12

Infrared Bubbles

N49: an example of IR bubble

<ロ> (日) (日) (日) (日) (日)

IR bubbles

8 μ m emission: PAH features

Diana Gama¹ (IAG/USP)

July 6th, 2016 6 / 22

Figure: CN148. Dewangan et al. (2014)

Figure: N4. Hong-Li Liu et al. (2016)

Figure: N6. Yuan et al. (2014)

・ロト ・回ト ・ヨト

Diana Gama¹ (IAG/USP)

ISWA 2016 - public

-

The Bubble N10

N10

æ

<ロ> (日) (日) (日) (日) (日)

N10

Multi-wavelength information

Gama et al. (2016)

Diana Gama¹ (IAG/USP)

ISWA 2016 - public

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Molecular Gas

PMO 13.7-m observations ($\theta \sim 52$ arcsec)

Gama et al. (2016)

æ

イロト イヨト イヨト イヨト

Ionized Gas

Contours: 20 cm emission RGB image: Spitzer

Contours: 20 cm emission Grey image: 24 μ m

Diana Gama¹ (IAG/USP)

July 6th, 2016 11 / 22

Cold Dust

Contours: 870 μ m emission Map: 8 μ m

()

Cold Dust

Diana Gama¹ (IAG/USP)

ISWA 2016 - public

July 6th, 2016 12 / 22

Cold Dust

Contours: 870 μ m emission Map: 8 μ m

Black contours: ¹³CO (1-0)

Molecular tracers of star formation

3

Ionization

 HCO^+

- molecular ions: dense pre/protostellar regions
- cavities produced by *outflows*: infall accompanied by jets
- HCO⁺ formation:

 $H_3^+ + CO \rightarrow HCO^+ + H_2$

- H_3^+ formation:

 $\begin{array}{l} H_2+\nu_{cr}\rightarrow H_2^++e^-\\ H_2^++H_2\rightarrow H_3^++H \end{array}$

Figure: L1157-B1. Podio et al. (2014)

- 4 回 ト - 4 回 ト

PDR

HCN

- ionizing UV radiation
- dense layers gas
- C^+ and $H_2\ can\ react$

Figure: NGC 7023. Fuente et al. (1993)

Diana Gama¹ (IAG/USP)

ISWA 2016 - public

July 6th, 2016 15 / 22

Shocks ans outflows

SiO

- SiO produced by C-type shocks
- structures related with embedded YSOs
- gas under shock: young, energetic outflows
- gas-phase chemistry:

 $Si + O_2 \rightarrow SiO + O$ $Si + OH \rightarrow SiO$

Figure: NGC 1333. Lefloch et al. (1998)

< < p>< < p>

Prestellar cores

 $\mathsf{N}_2\mathsf{H}^+$

- cold star-forming cores
- YSOs driving powerful outflows

 $H_3^+ + N_2 \rightarrow N_2 H^+ + H_2$

 final stages of SF: depletion of CO

Dense Gas

CS

- typical dense gas tracer
- CS lines: regions > 100 denser than CO
- CS distribution in IR: YSOs and gas surrounding interaction
- high density gas layers

Figure: Trifid Nebula. Lefloch et al. (2008)

ISWA 2016 - public

IRAM 30-m observations: On-the-Fly maps

Line	Frequency	HPBW	
	(GHz)	(arscec)	
HCO $^{+}$ (1 – 0)	89.188	27.58	
HCN $(1-0)$	88.613	27.76	
SiO $(2 - 1)$	86.847	28.33	
N_2H^+ (1 – 0)	93.173	26.40	
CS (3 – 2)	146.969	13.40	

Diana Gama¹ (IAG/USP)

July 6th, 2016 19 / 22

æ

Deep integration

3 mm band spectral line survey

Complex organic molecules						
NH_2CHO	CH ₃ CHO	¹³ CH ₃ OH	CH₃OH			
Nitrogen-containing molecules						
$HC^{15}N$	N2HD	H ¹³ CN	HN ¹³ C	HNCO		
HCN	H ¹⁵ CN	¹⁵ NNH	HCN	CH₃CN		
HC_3N	¹³ CN	CN	DCN			
Sulfur-containing molecules						
SO	¹³ CS	C ³⁴ S	OCS	CS		
NS	H_2CS	C ³³ S				
Molecular ions						
HCO^+	NNH^+	DCO^+				
Other molecules						
HCO	H ¹³ CO	SiO	CCH	C ¹⁸ O		
¹³ CO	C ¹⁷ O	CO	H_2CCO	H_2CO		
H ¹³ CO	$c-C_3H_2$					

Diana Gama¹ (IAG/USP)

July 6th, 2016 20 / 22

2

<ロ> (日) (日) (日) (日) (日)

Perspectives

Next steps...

- Characterize physical parameters
- Derive the relative abundance of the species
- Compare the abundances with models
- Investigate the evolutive stage of the clumps

3

-

- ∢ ∃ ▶

Thank you!

International Symposium and Workshop on Astrochemistry. ISWA 2016 Campinas-Brazil

