INTERNATIONAL SYMPOSIUM AND WORKSHOP ON ASTROCHEMISTRY

Understanding extraterrestrial molecular complexity through experiments and observations

Non-thermal ion desorption from nitrilebearing astrophysical ice analogues studied by electron and heavy ion bombardment

<u>Fabio Ribeiro</u>, Guilherme C. Almeida, Wania Wolff, Enio Frota da Silveira, Maria Luiza Rocco, Heloisa M. Boechat-Roberty

Departamento de Física

Relevant Interstellar Nitriles

Increasing complexity of the organic —C≡N series

Relevant Interstellar Nitriles

- Very abundant in space (very common in star forming regions)
- Important in the formation of amino acids;
- CH₃CN is a good probe to estimate temperature and column densities based on observations of a single rotational transition.
- Tracer for Hot Molecular Cores (HMCs)
- Enhanced abundance of CH_3CN in warm (T = 100–300 K) and dense ($n_{H_2}=10^6-10^8$ cm⁻³) environments;

Nitrile Chemistry

Problems:

- How such **complex nitriles may be formed**?
- Not enough complex species can be produced in the gas phase by known reaction routes;
- What is the role played by **dust grains/ ice mantles**?
- What is the influence of **ionizing radiation**?
- Does ion desorption influence gas abundances?
- Is their **chemistry** connected?
- Is the same chemistry happening in other sources?

Laboratory work

- Surface processes are poorly known;
- Surface Science Techniques under conditions that resemble those found in the ISM;
- Non-thermal desorption processes:

electrons in/ ions out

Electron Stimulated Ion Desorption (ESID)

Laboratory work

- Surface processes are poorly known;
- Surface Science Techniques under conditions that resemble those found in the ISM;
- Non-thermal desorption

processes:

ion in/ secondary ions out

Plasma Desorption Mass Spectrometry (PDMS)

Laboratory experiments - ESID

Ion desorption increases at 1400 eV, which is 3.5 times the ionization threshold for the CH₃CN N1s core level at 406 eV.

Ribeiro et al. Phys.Chem.Chem.Phys., 2015, 17, 27473

Laboratory experiments - ESID

Ribeiro et al. Phys.Chem.Chem.Phys., 2015, 17, 27473

Laboratory experiments - PDMS

PDMS mass spectrum of (CH₃)₂CHCN at 100 K

Laboratory experiments - PDMS

PDMS mass spectrum of CH₃CN at 100 K. Inset: Desorption of CH₃CN ion clusters

ESID and PDMS comparison

- Stronger fragmentation in **ESID**
- Proton transfer processes during ion desorption

ESID and PDMS comparison

- Stronger fragmentation on surface in **ESID** in respect to CH₃CN;
- Similar Ion Yield for $(CH_3)_2CHCN^+$ (m/z = 69) ion desorption in ESID and PDMS;
- Proton transfer processes during ion desorption.

Summary Remarks

- Strong fragmentation on surface and ion desorption is oberseved for all studied nitriles;
- Fragmentation caused by electrons is initiated by Coulomb explosion after Auger electronic decay;
- Predominance for saturated and protonated fragments desorption. The last might play a role in ion-neutral reactions on gas-phase;
- Cluster ion desorption may be a route for delivering for complex molecules (nitriles) to the cold interstellar and circumstellar material exposed to ionizing radiation
- Similar conclusions can be ascribed to the Titan atmosphere,
 where a set of complex nitriles is known to exist

Acknowledgements

Thank you for your attention!

INTERNATIONAL SYMPOSIUM AND WORKSHOP ON ASTROCHEMISTRY

Understanding extraterrestrial molecular complexity through experiments and observations

Departamento de Física

