Modeling the effects of <u>grain motion</u>, <u>charging</u> and <u>size distribution</u> to interstellar chemistry

1. Chinese Academy of Sciences South America Center for Astrophysics (CASSACA), Santiago / Universidad de Chile, Chile

- 2. Yunnan Observatories, Chinese Academy of Sciences, PR China
- 3. Potsdam University/DESY, Germany
- 4. University of Missouri, USA

Introduction

Discrepancies between obs. and astro-chem. models persist. E.g., we also found in a sample of MSFRs: (*Ge, He, Chen & Takahashi 2014MNRAS.445.1170G*)

 $X(CH_3OH) : X(HCOOCH_3) : X(CH_3OCH_3) = 1.00 : 0.42 : 2.36$

But in the molecular cloud warm-up chemical model, the predicted ratios were

 $X(CH_3OH)$: X(HCOOCH₃) : X(CH₃OCH₃) ≈ 1.00 : 0.01 : 0.006

(Garrod 2013ApJ...765...60G)

More examples in: Wakelam+ 2010SSRv..156...13W Caselli & Ceccarelli 2012A&ARv..20...56C

Introduction

How to improve the gas-grain interaction?

In a classical picture of gas-grain interaction: neutral grains of a single size standing still in gas.

In reality: 1) Grains are moving through the gas; hν 2) Grains can be charged; 3) Grains have a size distribution.

Grains motion \rightarrow gas accretion

Accretion cross-section?:

... next page

1. Chemical effects of grain motion+Charging

Change of accretion cross section by grain motion:

1. Results: Dark cloud (DC)

Typical cases in gas phase

Typical cases on grain surface

DC

D-0

DØ

JNO

4

JH

Our ggchem F90 code: Rate equation, Single grain size, Chem. Network: ≻655 species

≻6067 reactions (Benchmarked against Semenov et al. 2010)

Added physics: ➢Grain charging \succ lon accretion ➢Photo-electron ejection (Weingartner & Draine 2001ApJS..134..263W)

8

Full line: no grain motion; Dotted line: with grain motion.

Grain motion effect is small in MC.

9

•Mostly 1-2 orders of

magnitude

 surface -- increase by up to more than 6-7 orders of magnitude

2.Grain charging + size distribution

Td higher for smaller affects surface reactions grains in CNM models \rightarrow and desorption!

We expect chemical differentiation among grain sizes.

2.Grain charging + size distribution

Our ggchem F90 code: Modified rate equation Full gas network: ≻655 species Reduced surface network.

Added physics:
>Grain charging
>Ion accretion
>Photo-electron ejection
No grain motion.

Reduced surface network: Ices related to H, C, O.

2. Results: Abundances

2. Results: Abundances

Ge, He & Li 2016MNRAS.460..L50G

Take home points

1) Grain motion + charging

→ abundance changes up to more than 6 orders of magnitude.

2) Grain charging + size distribution
→ enhance ice abundance up to 4 orders of magnitude.
→ areal density can be different across grain sizes by up to 5 orders of magnitude.

3) A proper treatment of gas-grain interaction (grain motion, charging, size distribution, Td variation, ...) is important!

4) Do the such models explain obs. better? That's our next step...

Thanks!

How grain motion affect accretion?

Accretion of neutral species:

1) Enhanced;

2) Heavy species enhanced more;

3) More enhancedDC model than inMC or CNM.

How and how fast do grains move?

DC: Reaction Rate Tracing(RRT) Due to greater Due to greater **Typical ions** H_3^+ loss of CO loss of CO HCO+ -8 -9 log(X) -10 -10 log(X) -1 log(Ĩ) -11 -12 -12 -13 -13 DC DC <u>no grain motion</u> -14 DC -14 5 8 0 6 9 -15 5 8 9 2 3 4 5 6 8 6 Λ log(t) (year) log(t) (year) log(t) (year) CO⁺ +H₂ →HCO⁺ +H CH⁺ +O →HCO⁺ +H HOC* +H2 →HCO* +H2 +H>O →HCO⁺ +H - -O+CH→HCO*+E H[‡] +CO →HCO⁺ +H₂ - - -CH3 +O →HCO* +H +CO[™] +E →CO +H no arain motion -13 log(R_{pro}) (cm⁻³s⁻¹) log(R_{con}) (cm⁻³s⁻¹) log(X) -14 -14 -6 -15 15 -16 -16 -8 -17 -17 -9 DC -18 -18 -10 -19 -19 8 0 2 5 6 9 3 4 5 6 7 3 4 8 g 8 5 6 0 2 9 0 2 log(t) (year) log(t) (year) log(t) (year)

Age (yr)

Ge et al. 2015MNRAS.455.3570 ି

Average grain charges for different grain sizes DC **CNM** 0.5 30 25 0.0 20 15 -0.5 \mathbf{N} 105 -1.00 a =a =1.81e-06 1.13e-06 4.75e-06 1.15e-06 2.97e-06 8.96e-06 -5 1.37e-06 7.90e-06 1.55e-06 4.23e-06 2.28e-06 1.32e-05 -1.51.57e-06 1.57e-05 2.13e-06 6.11e-06 3.18e-06 1.96e-05 () 5 6 2 2 3 6 3 5 4 8 $\log(t)$ (yr) $\log(t)$ (yr)

23