

Astrochemistry in protoplanetary discs: disk shape and dust properties setting the stage

Peter Woitke (St Andrews, Scotland, UK) **and the DIANA team**

International Symposium and Workshop on Astrochemistry July 3-8, 2016 - Campinas, SP - Brazil

Protoplanetary Disks

IS chemistry ≠ disk chemistry

- larger densities $\approx 10^4 \dots 10^{16} \text{ cm}^{-3}$
- higher temperatures \approx **10** ... **10000** K ($T_{gas} \ge T_{dust}$)
- **central star** = strong UV and X-ray source
- 2D/3D structure
 - \rightarrow strongly irradiated and strongly shadowed regions
- much larger dust grains \approx 0.1 µm ... 1 mm (or even larger)
 - → reduction of UV dust opacity & total dust surface by factor ~100 (!)
 - → penetration depths: UV \approx X-ray \ll CR
 - \rightarrow important for chemistry and heating/cooling balance

IS chemistry ≠ disk chemistry

Analysis and Modelling of Multi-wavelength Observational Data from Protoplanetary Discs

FP7-SPACE 2011 collaboration

DiscAnalysis

St Andrews	Vienna	Amsterdam	Grenoble	Groningen
P. Woitke	M. Güdel	R. Waters	F. Ménard	I. Kamp
Greaves Ilee Rigon	Dionatos Rab Liebhart	Min Dominik	Thi Pinte Carmona Anthonioz	Antonellini
sub-mm to cm	X-rays	near-mid IR	near-far IR	near IR - mm
coordination	obs./mod.	mod./obs.	obs./mod.	mod./obs.
JCMT, eMERLIN	XMM, Herschel	VLT, JWST	HST, Herschel	Herschel, JWST
astrobiology	high energy	dust mod.	interferometry	gas mod.

multi- λ data collection X-ray to cm (archival and proprietary) coherent, detailed modelling of gas & dust throughout the disc using disk modelling software ProDiMo, MCMax, MCFOST aim: disc shape, temperatures, dust properties, chemistry in the birth-places of exoplanets

ProDiMo: a modular framework for *your* disc research

main papers: Woitke, Kamp, Thi (2009), Kamp et al. (2010), Thi et al. (2011), Woitke et al. (2016)

- select your chemical species
- compile *your chemical rates* (or use UMIST or OSU or KIDA)
- set stellar **UV & X-rays** properties
- grain material & size distribution
- column density & disc zones
- options:
 - parametric / hydrostatic
 vertical extension ?
 - dust settling ?
 - PAHs ? (RT / chemistry / heating)
 - X-ray radiative transfer ?
 - time-dependent chemistry ?
 - grain charges ? (in development)
 - *surface chemistry* ? (in development) 4 / 16

usage of UV and X-ray data

DiscAnalysis

X-ray radiative transfer

→ Christian Rab, University of Vienna, Austria

Charged Grain Chemistry

- photoelectric / photodetachment electron attachment charge exchange
- dissociative charge exchange
- thermionic emission
- $Z + M \rightarrow Z^+ + e^- + M$ collisional electron detachment

DIANA ice abundances

simulated observations

SED and line fluxes $dist = 140.0 \, pc$ -9 R = 50000– star + UV -10 $\log v \; F_v \; [erg/cm^2/s]$ -11 -12 -13 100.0 1000.0 0.1 1.0 10.0 λ [µm]

DIANA

DiscAnalysis

continnum images

1.5

1.0 E

0.5

0.0

-8

velocity profile

y [AU]

emission line maps

¹³CO line @ 220.399 GHz from an edge-on disk

channel maps

"Impactograms"

→ Woitke et al. 2016, A&A 585, 61

\rightarrow Woitke et al. 2015, submitted to A&A

DiscAnalysis

DIANA

10/16

Impact of PAHs

→ Woitke et al. 2015, submitted to A&A

HD 142666 HD 169142 -8 gen =2196 $\chi\,{=}1.51$ gen =0500 χ =2.72 -8 -9 -9 -10 -10 $\nu F_\nu [{\rm erg}/{\rm cm^2/s}]$ <UV> data -11Spitzer IRS -11 star + UV generic SCUBA SPIREspec 12 -12 \diamond PACSspec <UV> data GASPSline ۲ Spitzer IRS ٠ AKARI $\frac{\text{dist} = 116.0 \text{ pc}, \text{ incl} = 45^{\circ}}{\text{ProDiMo}}$ $\frac{\text{ProDiMo}}{\text{Spitzer IRS}}$ dist = 145.0 pc, incl = 13° — ProDiMo — Spitzer IRS star + UV SpitzerIRS ٠ -13 COMICS generic ٠ -13 6 SCUBA WISE ٠ PACS JOHNSON 4 2MASS \diamond AKARI . USNOB1 SpitzerIRS ٢ ٠ 5 -14-14 **JOHNSON** GENEVA 4 ٠ TYCHO2 2MASS ٠ 4 [Jy]3 F_v[Jy] STROMGREN GENEVA ٠ TYCHO2 ۲ <UV> 4 < ___ model model -15 -15 • ? 10-1 10⁰ 10⁴ 10-1 10⁰ 10^{4} 3 $f_{\mathsf{PAH}}\approx 0.2\text{-}0.4$ $f_{\mathsf{PAH}} \approx 0.1\text{-}0.2$ 2 8 10 12 14 4 6 4 8 10 12 14 6 λ [µm] λ [µm]

PAH and dust opacities

→ Woitke et al. (2016, A&A 586, 103)

All results are public

Image: Second standard model - Mozilla Firefox File Edit Yew History Bookmarks Tools Help Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox Image: Second standard model - Mozilla Firefox <th>281 plots! (physico-chemical structure, dust properties, SED,</th>	281 plots! (physico-chemical structure, dust properties, SED,
TWHya	images, line results)
	detailed 2D model output
24	complete model setup:
$\begin{bmatrix} 0.20 \\ \vdots \\ 0.15 \end{bmatrix}$	input parameter, observational data files \rightarrow reproducible model
	(ProDiMo / MCFOST / MCMax)
$19 \underbrace{\left[\begin{array}{c} -\sum_{gen}/(1.4amu) \\ -\sum_{dens}/(1.4amu) \\ 10^3 \\ 10^0 \\ r[AU] \end{array} \right]}_{10^1 10^0 } \underbrace{10^1 \\ 10^2 \\ 10^2 \\ 10^1 \\ 10^0 \\ r[AU] \end{array} \right]} \underbrace{0.00}_{10^1 10^0 } 10^2 \\ 10^2 \\ r[AU] \\ 10^2 \\ 10$	human-friendly model parameter
White dashed contour lines mark radial Av=0.01 and 1, black dashed contour lines mark vertical Av=1 and 10.	selection of derived properties
For SED and comparison to continuum and line observations, click on TwHya_DIANA#cps.gz below.	(IP overse, SED fluxos, apparent
TWHya coldens.png	(IR-excess, SED-Iluxes, apparent
TWHya_dens.png	sizes, mm-slope, line fluxes and
TWHya DIANAfit.ps.gz	FWHM vs. observations,
TWHya_ModelServp.ugz	predicted line fluxes,)
<u>TWHya.para</u> TWHya.properties	

Conclusions

astrochemistry in protoplanetary disks ...

- at least 2D with wide range of conditions
 - → densities
 - → dust and gas temperatures
 - → *radiation fields*
 - \rightarrow disc shape \rightarrow shielding
 - → different lines come from different disc regions
 - → "nebula analysis" highly questionable (for example rot. diagrams)
- large grains need to be included to fit SED
 - → reduction of UV dust opacity & total dust surface by factor ~100
 - → deeper warm, chemically active disk surface layer
 - → stronger emission lines (e.g. far-IR lines, CO ro-vib)
 - → less ice
 - → *fewer charged grains*, larger electron concentration in midplane

a word on lab chemistry ...

ProDiMo uses ~ 530 physical/chemical input data files (!)

• non-LTE data for atoms and molecules

- \rightarrow energy states & degeneracies (rotational, vibrational, some electronic)
- → line data (level indices, wavelengths, Einstein coefficients)
- → collisional data (!), specific pumping processes, ...

• ice data

- → adsorption energies (!)
- → photodesorption efficiencies,
- \rightarrow optical constants, ...

• dust data

- \rightarrow optical constants
- → photoelectric effect efficiencies, threshold energies, ...
- cross sections, cross sections, cross sections ...
 - \rightarrow e.g. UV-photodissociation, X-ray processes, PAHs, ...

chemical rates

- → Arrhenius parameters
- → self-shielding factors
- \rightarrow special processes (H₂-formation on grains, excited H₂, surface chemistry, ...)

standard model CY Tau

DiscAnalysis

JIANA

standard model CY Tau

The R-branch CO fundamental with FLiTs ...

DiscAnalysis

ANA

DIANA

standard model HD 163296

1.0 10.0 r [AU]

0.1

100.0

7/2

1 10 r(AU)

100

0.2 0.0 1 10 r [AU]

12 / 15

0.00

100

01

"Standard" dust opacities for disks

 \rightarrow Min et al. 2015, University of Amsterdam, NL, A&A accepted

Opacities of aggregates

DiscAnalysis

JIANA

- DDA, 100 dipoles/GRF, up to 8000 GRFs (4µm)
- results include phase function, polarisation, ...

DIANA dust opacity standard

- effective mixture of
 - ~60% laboratory amorphous silicates (Mg_{0.7}Fe_{0.3}SiO₃, Dorschner+1995)
 - **~15% amorphous carbon** (Zubko 1996, BE-sample)
 - ~25% porosity
- powerlaw size distribution $f(a) \sim a^{-pow}$ ($a_{min} \sim 0.05 \ \mu m$, $a_{max} \sim 3 \ mm$, $a_{pow} \sim 3.5$)
- *distribution of hollow spheres* (hollow volume ratio **0.8**)

"Standard" dust opacities for disks

→ Min et al. 2015, University of Amsterdam, NL, A&A submitted

DiscAnalysis

DIANA

impact on gas modelling

 \rightarrow Woitke et al. 2015, submitted to A&A

impact on gas modelling

 \rightarrow Woitke et al. 2015, submitted to A&A

Spitzer molecular emission lines

→ Antonellini et al. 2015, A&A accepted

 \rightarrow Spitzer IRS (R=600) data from Rigliaco et al. (2015)

Spitzer molecular emission lines

→ Antonellini et al. 2015, A&A accepted

 \rightarrow Spitzer IRS (R=600) data from Rigliaco et al. (2015)

The PAH UV-shield

 \rightarrow Woitke et al. 2015, submitted to A&A

The PAH UV-shield

\rightarrow Woitke et al. 2015, submitted to A&A

Gas Heating & Cooling

heating

cooling

Dust settling

0.5 6 0.4 0.3 z / r z / r 0.2 0.1 0.0 1.0 10.0 100.0 0.1 r [AU]

gas (assumed): exponential tapering-off

dust (calculated): Dubrulle-settling $\alpha = 10^{-3}$

some modelling results

DiscAnalysis

DIANA

Density Structure

Woitke, Kamp & Thi (2009, A&A 501, 383); Thi, Woitke, Kamp (2011, MNRAS 412, 711)