

Complex Organic Molecules Formation in Cold Cores

Qiang Chang

Xinjiang Astronomical Observatory

Chinese Academy of Sciences

Eric Herbst

University of Virginia

International Symposium and Workshop on Astrochemistry Campinas, SP, Brazil

July 4, 2016

Complex Organic Molecules

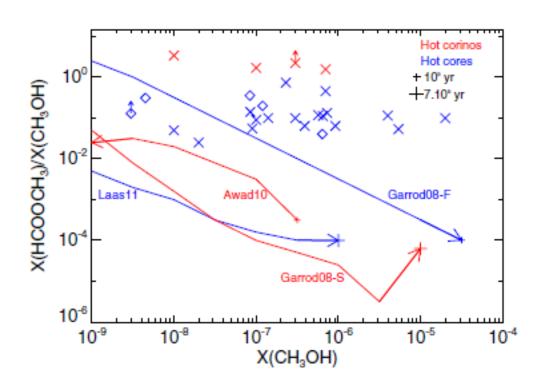
- Almost 200 interstellar molecules have been found.
- Carbon containing molecules with at least 6 atoms are called interstellar complex organic molecules(COMs).
- Found in almost all astronomical sources in the early phases of star formation including protoplanetary disks.
 - CH₃CN, MWC480, Öberg et al 2015 Nature, CH₃OH, TW Hya, Walsh et al. 2016 APJL

COMs Formation Mechanism(1)

- COMs were initially found in hot cores. Rubin et al 1971 Apj.
- Two-step formation mechanism(Millar et al, Apj 1991).
- 1. Mother species were formed during the cold star formation process. Single atoms addition.
- 2. As molecular clouds warm up, mother species evaporate into gas phase and react with each other to form COMs.
- Challenge from laboratory experiments(Horn et al 2004 Apj).

COMs Formation Mechanism(2)

- Garrod & Herbst 2006, 2008, A&A.
- Radicals are formed by UV radiation of ice mantle on grain surface.
- Radicals recombine to form COMs.


$$H_2CO \rightarrow HCO + H$$

$$CH_3OH -> CH_3O + H$$

Narrow temperature range (30-40K).

Radicals have be able to diffuse on grain surface.

Methyl Formate (HCOOCH₃)

Taquet et al. A&A 2012

COMs in Cold Clouds (10K)

MF: HCOOCH₃ DM: CH₃OCH₃

- L1689b: MF: 7.4(-10), DM: 1.3(-10),
 Bacmann et al, A&A 2012
- B1-b: MF: 2.0(-11), DM: 2.0(-10)
 Cernicharo et al, ApJL, 2012
- L1544: MF: <1.5(-9), DM:<2.0(-10)
 Vastal et al, ApJ, 2014

Models

Reactive desorption (RD).

Vasyunin & Herbst, ApJ 2013, (VH)

Critical species were formed on grain surface and then ejected into gas phase by RD. COMs are formed in gas phase.

$$CH_3O + CH_3 -> DM$$

 $H_2COH^+ + H_2CO -> H_5C_2O_2^+$
 $H_5C_2O_2^+ + e -> MF + H$

Balucani et al, MNRAS, 2015, (BCT)

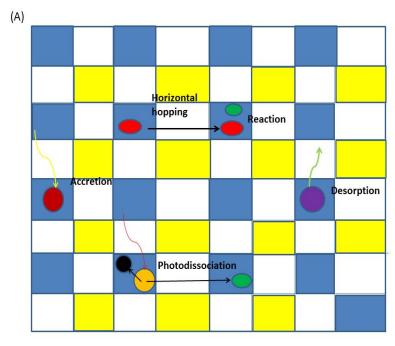
Methanol were formed on grain surface and then ejected into gas phase by RD. Methanol starts the COMs formation processes.

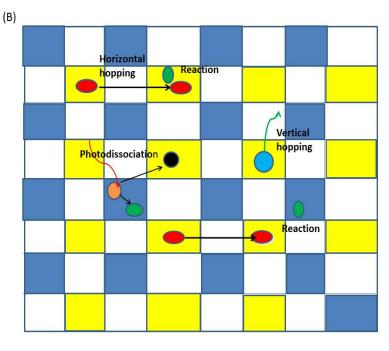
$$CH_3OH + OH -> CH_3O + H_2O, CH_3O + CH_3 -> DM,$$

 $DM -> CH_3OCH_2 -> MF$

Ruaud et al, MNRAS, 2015, (RW)

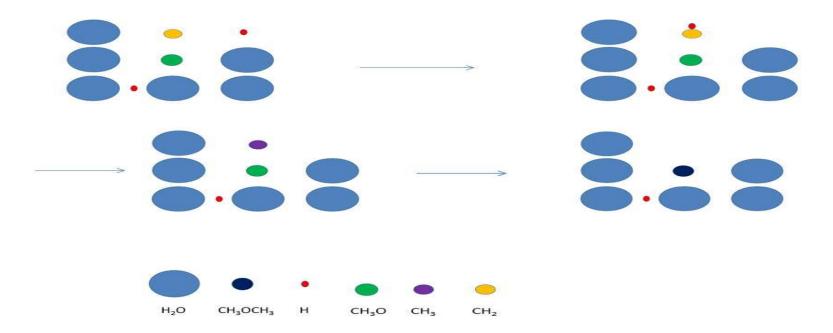
COMs are formed on grain surface. Eley-Rideal and complex induced reaction.


CO₂ Formation


- Is the discovery of COMs in cold cores a new challenge to astrochemical modeling?
- Not really. We had problem to explain the formation of CO₂ on grain surface.

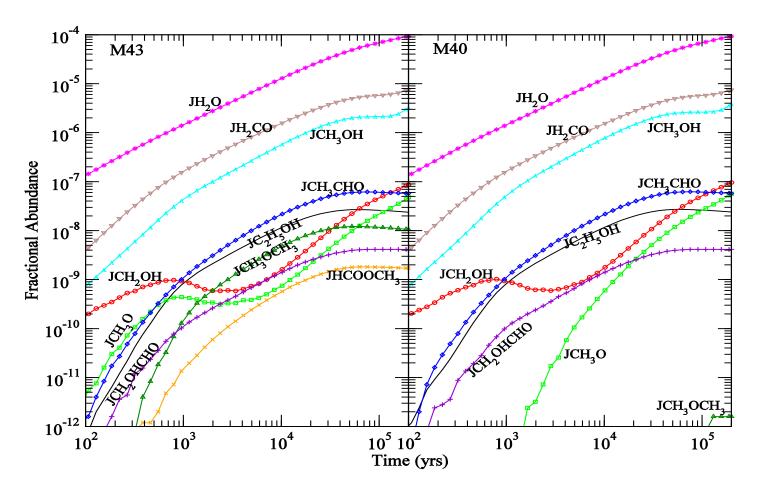
$$CO + OH \rightarrow CO_2 + H$$

Unified Microscopic-Macroscopic Monte Carlo Simulation Method


 Surface Processes(Chang & Herbst, ApJ. 2012, 2014)

Chain Reactions

Non-diffusive surface chemical reactions.
 Smallest scale chemical explosion? Chang & Herbst, ApJ 2016


Surface CH₃O

- CO + H -> ...-> CH₃OH
- CH₃OH + photon -> CH₃O + H

- CH₃O -> CH₂OH ?
- $CH_3OH + OH -> CH_3O + H_2O$
- Two Models, M40 and M43

Results

Surface COMs

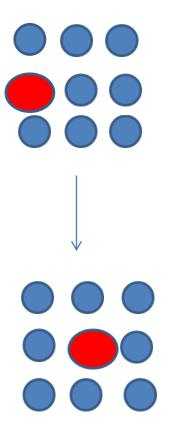
Results

Gas Phase COMs

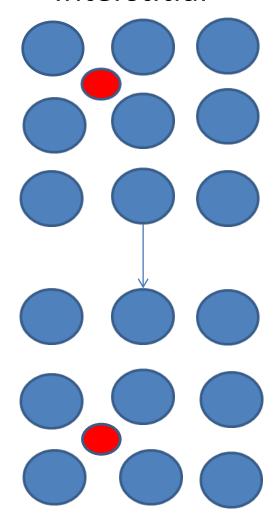
L1689b

	DM	CH ₃ O	MF	H ₂ CO
Observation:	1.3(-10)	•••	7.4(-10)	1.3(-9)
M43:	4.7(-10)	2.7(-11)	9.4(-11)	2.8(-9)
VH model:	1.3(-10)	8.5(-10)	3.3(-12)	5.4(-8)
RW model:	2.4(-10)	7.6(-12)	3.6(-13)	1.1(-8)

B1-b


	DM	CH ₃ O	MF	H ₂ CO
Observation:	2.0(-11)	4.7(-12)	2.0(-11)	4.0(-10)
M43:	9.8(-11)	8.4(-12)	2.5(-11)	2.0(-8)
VH model:	3.7(-12)	1.5(-10)	2.0(-12)	4.8(-8)
RW model:	5.5(-12)	1.2(-11)	1.7(-13)	8.5(-9)

Future COMs Formation Models


- Progress driven by observation.
- Gas phase chemistry.
- Chemical reactions in ice.
 Three phase model with bulk diffusion(Chang & Herbst 2014).
- Missing physical processes.
 e.g. stochastic heating of smaller dust grains.

Bulk diffusion

Substitutional

Interstitial

Thank you!