Radioresistance of adenine to cosmic rays

<u>Gabriel Vignoli Muniz</u>; Christian F. Mejía; Rafael Martinez; Basile Auge; Hermann Rothard; Alicja Domaracka and Philippe Boduch **muniz@ganil.fr**

Centre de Recherche sur les Ions, les Matériaux et la Photonique CEA/CNRS/ENSICAEN/Université de Caen-Basse Normandie Caen, France

(imap

Introduction

- The presence of complex organic molecules (COM) such as nucleobases and amino acids in carbonaceous meteorites on Earth is a strong indication of its existence in outer space. †.
- Detection of glycine (amino acid) in the coma of comet 67P/Churyumov-Gerasimenko by the Rosetta space mission•.
- Some groups have reported formation of COM under simulated astrophysical environments°.
- Stability of COM under irradiation of galactic cosmic rays and solar wind is not yet well understood.

*Martins Z, Botta O, Fogel ML et al. Earth Planet Sci Lett 2008; 270.
Altwegg et al. Sci. Adv. 2016; 2.
*Chyba C. & Sagan C. Nature 1992;355.
*Nuevo et al. Astrobiology 2014; 14.

Objective

• To simulate and study effects of cosmic rays (swift heavy ions) of COM by using the beam line at GANIL and GSI.

First results: irradiation of adenine.

Nap

Adenine

- $C_5H_5N_5$
- A purine nucleobase
- An integral part of the composition of biomolecules of unique importance such as DNA and RNA
- A molecule that is evolutionarily preserved in all living beings, including viruses.

DNA, RNA and the nucleobases

Low temperature (~ 12 K). 10⁻⁸ mbar.

Cimap

Adenine sample prepared for irradiation.

Swift Heavy Ions – Cosmic rays analogues

Cosmic rays are ions with a broad energy range from few MeV/n to TeV/n.

Aap

* Simulated flux of iron in the interstellar medium (ISM) from Shen et al Astron. Astrophys. 2004; 415:203–215.

Complex molecules have complex IR spectra.

Solid adenine spectrum at 12K H_{15} H_{14} Adenine 0.5 N_{10} 0.4 914 cm⁻¹ Absorbance 0.3 H_{13} 0.2 0.1 α band H_{11} N₃ H_{12} 0.0-1500 1000 500 2000 3000 2500 4000 3500 $N = \frac{2.3}{\Delta} \int Abs(v) \,\mathrm{d}v$ Wavenumbers [cm⁻¹]

ap

Summary of performed experiments

lon Beam	Energy (MeV/u)	Electronic stopping power (keV.µm ⁻¹)	Nuclear stopping power (keV.µm⁻¹)	Thickness (μm)	Penetration depth (µm)
Xe ⁺²³	0.7	1.12 x 10 ⁴	6.95 x 10 ¹	0.29	16
Kr ³³⁺	10.5	5.80 x 10 ³	3.6	0.50	120
Ca ¹⁰⁺	4.8	3.3 x 10 ³	2.22	0.35	50
C ⁴⁺	0.98	1,00 x 10 ³	0.9	0.25	12

Results – IR spectra evolution

Results - IR spectra evolution

$$A = A_0 e^{-\sigma_d F}$$

Sample	Destruction cross section (x10 ⁻¹³ cm ²)	S _e [x10 ³ keV μm ⁻¹]	
Xe ²³⁺	22.1 ± 0.1	11.2	
Kr ³³⁺	11.4 ± 0.3	5.8	
Ca ¹⁰⁺	4.5 ± 0.2	3.3	
C 4+	1.24 ± 0.06	1.0	

Cross section as a function of stopping power.

$$\sigma = 4 \ge 10^{-17} S_e^{-1.17}$$

Results obtained by our group show that the destruction cross section obeys a electronic stopping power law with:

 $1 \le n \le 1.5$

Cimap

* Shen et al Astron. Astrophys. 2004; 415:203–215.

Destruction rate

Half-life of solid adenine exposed to cosmic rays in the ISM.

$$\tau_{1/2} = \ln 2 (4 \pi \sum_{Z} \int \sigma (Z, E) \Phi(Z, E) dE)^{-1}$$

$$\tau_{1/2} = (10 \pm 8) \ x \ 10^6 \ years$$

Cimap

The average time of survival of a DC is around 10 Myears. This is indeed close to the order magnitude of the half-life of adenine evaluated in this work.

Comparision between different sources of radiation

The radiation G yield is defined as the number of adenine molecule destroyed per 100 eV absorbed.

Projectile	Radiation yield G (eV ⁻¹)	Reference
Xe ²³⁺ (92 MeV)	13.13	This work
Kr ³³⁺ (820 MeV)	12.56	This work
Ca ¹⁰⁺ (192 MeV)	9.70	This work
C ⁴⁺ (12 MeV)	8.29	This work
Electrons (5 keV)	1.98	(Evans et al., 2011)
UV photons (10.2 eV)	4.9 × 10 ⁻⁵	(Guan et al., 2010; Saïagh et al., 2014)

Half-life of solid adenine exposed to different source of radiation in distinct regions.

UV photons			Cosmic Rays		
Region	Half-life (Myears)	UV flux (cm ⁻² s ⁻¹)	Region	Half-life (Myears)	
ISM	4.5 x 10 ⁻¹	1.0 x 10 ⁸	ISM	10	
Dense Clouds (DC)	4.5 x 10 ⁴	1.0 x 10 ³	Dense Clouds (DC)	≈10	

Conclusions

- The adenine molecule destruction cross sections as a function of the deposited energy follow a power law: A S_e^n with n = 1.17
- The destruction of solid adenine by cosmic rays are dominated by iron and protons.
- The half-life of adenine was estimated in different region of space: ISM (0.45 Myears) and DCs (10 Myears).

Outlooks

- Irradiation of the all nucleobases that composes DNA and RNA. (Thymine, Uracil, Guanine and Cytosine).
- Improvement of the methodology of preparation of solid nucleobases : films more uniform.
- Irradiation of Pyridine, a important heterocyclic biomolecule using complementary techniques: IR spectroscopy and time of flight.
- Data under analysis.

Thank You for your attention! Q&A

Cimap

muniz@ganil.fr