

INTERSTELLAR MOLECULES : The Value of Quantum Chemistry Natalia Inostroza, PhD.

Universidad Autonoma de Chile Head of the Quantum Astrochemistry Group Theoretical and Computational Chemistry Center.

COMPANY AND COMPANY

2 ato	ms	3	atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms
H₂	NaCl	C ₃	N₂H+	c-C₃H	<i>C</i> ₅	C₅H	C₀H	CH₃C₃N
AIF	ОН	C₂H	N₂O	I-C₃H	C₄H	I-H₂C₄	CH₂CHCN	НСООСН₃
AICI	PN	C ₂ O	NaCN	C₃N	C₄Si	C₂H₄	CH₃C₂H	СН₃СООН
C ₂	SO	C₂S	SO₂	C₃O	$I-C_3H_2$	CH₃CN	HC₅N	C ₇ H
СН	SO⁺	CH₂	c-SiC₂	C₃S	$c-C_{3}H_{2}$	CH₃NC	CH₃CHO	H₂C₀
CH⁺	SiO	HCN	CO2	C_2H_2	CH₂CN	СН₃ОН	CH₃NH₂	СН₂ОНСНО
CN	SiS	HCO	NH₂	HCCN	CH₄	CH₃SH	c-C₂H₄O	I-HC⁰H
СО	CS	HCO⁺	CO ₂ +	HCNH⁺	HC₃N	HC₃NH⁺	Н₂ССНОН	CH₂CHCHO
CO⁺	HF	HCS⁺	H₃⁺	HNCO	HC₂NH	HC₂CHO	C₀H⁻	CH₂CCHCN
СР	SH	HOC⁺	H₂D⁺,HD₂⁺	HNCS	нсоон	NH₂CHO		NH₂CH₂CN
SiC	HD	H₂O	SiCN	HOCO⁺	H₂CNH	C ₅ N		CO
HCI	FeO?	H₂S	AINC	H₂CO	H_2C_2O	I-HC.H	INES C	1 12 1
KCI	O ₂ ?	HNC	ocs	H₂CN	H₂NCN	I-HC.N.	PAHs	FORMIC-
NH	CF*	HNO	нср	H₂CS	HNC ₃	c-H2C3Q		ACID
NO	SiH?	MgCN	ССР	H₃O⁺	SiH₄	H ₂ CCNH	200° - / A	NITRILE
NS	PO	MgNC		NH ₃	H₂COH⁺			
				c-SiC ₃	C₄H⁻	FULLERENES		5 M 🖉 🦉
				CH₃	CNCHO		ser .	AMINO ACIDS
								RNA
	9 atom	s		C ₃ 10 ato	ms 11	ACETYLENE 22	atoms 1	3 atoms
CH₃C₄H	CH ₃ CH,	OH SINC	CH ₃ C ₅ I	N PH(CH,OI	-1), H	C _o N	C ₆ H ₆	HC ₁₁ N
CH ₃ CH ₂ CN	HC ₇ N	CH ₃ C(O)NH2 (CH3)2	CO CH ₃ CH	2CHO CH	3C6H C2F	I₅OCH₃	
(CH ₃)₂Ô	C ₈ H-	CH₂ČH	CH ₃			4		

- Computational chemistry is a rapidly growing field in chemistry.
 - Computers are getting faster.
 - Algorithms and programs are maturing.
- Some of the almost limitless properties that can be calculated with computational chemistry are:
 - Equilibrium and transition-state structures
 - dipole and quadrapole moments and polarizabilities
 - Vibrational frequencies, IR and Raman Spectra
 - NMR spectra
 - Electronic excitations and UV spectra
 - Reaction rates and cross sections
 - thermochemical data

Computational Cost

Why not use best available correlation method with the largest available basis set?

Method	Scaling of Cost
HF	$M^2 - M^3$
MP2	M^5
CCSD	M ⁶
CCSD(T)	M ⁷

- A MP2 calculation would be 100x more expensive than HF calculation with same basis set.
- A CCSD(T) calculation would be 10⁴x more expensive than HF calculation with same basis set.
- Tripling basis set size would increase MP2 calculation 243x (3⁵).
- Increasing the molecule size 2x (say ethane \rightarrow butane) would increase a CCSD(T) calculation 128x (2⁷).

- Different choices of methods and basis sets can yield a large variation in results.
- It is important to know the errors associated with and limitations of different computational approaches.
- This is important when doing your own calculations, and when evaluating the calculations of others.
- Don't just accept the numbers the computer spits out at face value!

Main Results

UNIVERSIDAD AUTONOMA DE CHILE

UΑ

Figure 1. Structural parameters of Urea, definition of NH2-torsion (0) and NH2-wagging (a) coordinates

170

Fig. 1. Potential energy functions of CF*, using aug-cc-pV5Z basis set.

 Δ ECASSCF-MRCI =7.33 eV (169.203 kcal/mol), Δ EMRCI-MRCI+Q=0.379 eV (8.748 kcal/mol

UNIVERSIDAD AUTONOMA DE CHILE

UA

MRCI+Q/aug-cc-pV5Z para el ión CF+ versus la curva calculada con el método Rydberg-Klein-Rees (RKR)

N.Inostroza, J.R.Letelier, P.Fuentealba, M.L.Senent, Spectrochimica Acta Part A-Molec. and Biomolecular Spectroscopy, 71, 798 (2008).

Silicon Carbon Molecules

Molecular Astrophysics: Silicon carbon molecules have been identified in gas phase. (Si is a major constituent of interstellar dust)

$l-C_4$	0.44 eV	$(^{1}\Delta_{g})$	and	0.61	eV	$(^{1}\Sigma_{g}^{+})$
---------	---------	--------------------	-----	------	----	------------------------

State	CASSCF/cc-pVTZ ^a	MRCI+Q/cc-pVTZ ^b	MCQDPT ^c	Electron configuration
$X^{3}\Sigma^{-}$	0.0	0.0	0.0	$(11\sigma)^2 (2\pi)^4 (3\pi)^2$
$^{1}\Delta$	0.30	0.29	0.40	$(11\sigma)^2 (2\pi)^4 (3\pi)^2$
$^{1}\Sigma^{+}$	0.44	0.46	0.46	$(11\sigma)^2 (2\pi)^4 (3\pi)^2$

N.Inostroza, M.L. Senent, M. Hochlaf, Astronomy & Astrophysics 486, 1047 (2008)

		RCCSD(T)	RCCSD(T)	UCCSD(T)	CASSCF	CASSCF	CASSCF	MCSCF	CCSD(T)	MP2	CISD	$m\omega^g$
		$cc - pVDZ^a$	$cc - pVTZ^b$	$cc - pVTZ^b$	$cc - pVDZ^a$	$cc - pVTZ^b$	$cc - pVQZ^b$	$6-31G(d)^c$	cc-pVQZ ^d	$6-31\mathrm{G}(d)^e$	$\mathrm{DZ}P^f$	
R_1	(Si-CCC str)	1.7662	1.7447	1.7427	1.7531	1.7410	1.7197	1.74	1.7249	1.732	1.722	
R_2	(SiC-CC str)	1.3299	1.2959	1.2954	1.2966	1.2841	1.2956	1.29	1.2899	1.297	1.298	
R_3	(SiCC-C str)	1.3120	1.3108	1.3133	1.3111	1.3003	1.2987	1.31	1.3062	1.3111	1.3070	
μ						4.0293	4.4064					
Be		2636.4	2705.49	2706.86	2691.68	2736.88	2753.16					2747.7085
B_0		2637.8			2690.45							
$D_{\rm e} \times 10^{-6}$		221.529			218.844							255.23
$\omega_1(\sigma)$	(C-C-C stretching)	2016.2	2040	1971	2070.0	2060	2005 (<i>I</i> = 152)	2055		2003		
$\omega_2(\sigma)$	(Si-C stretching)	1368.8	1391	1318	1357.1	1365	1366 (<i>I</i> = 11)	1342		1332		
$\omega_3(\sigma)$	(C-C-C stretching)	593.8	612	606	611.3	621	639 (I = 4)	613		629		
$\omega_4(\pi)$	(trans-bending)	379.8	384	381	443.1	455	463 (<i>I</i> = 9)	382		380		
$\omega_5(\pi)$	(cis-bending)	147.2	147	147	166.9	175	166 (I = 3)	150		151		

^{*a*} This work. Values derived from our 6D PES; ^{*b*} this work. Values obtained using standard approaches implemented in MOLPRO. Refs. (Eckert et al. 1997) (Rauhut et al. 1999); ^{*c*} Ref. (Rintelman et al. 2001); ^{*d*} Ref. (Sattelmeyer et al. 2002); ^{*e*} Ref. (Gomei et al. 1997); ^{*f*} Ref. (Alberts et al. 1990); ^{*g*} Ref. (McCarthy et al. 2000).

N.Inostroza, M.L. Senent, M. Hochlaf, Astronomy & Astrophysics 486, 1047 (2008)

CHARACTERIZATION of the anion SiC_3H^2

The hydrogen-bearing silicon carbide radicals SiC_nH are isovalent to $C_{n+1}H$ species.

SiC₃H⁻ isovalent to C₄H⁻

C₄H⁻

has been one of the first anions detected. Cernicharo, J. et.al, ApJ. 2002

Neutral C₄H was detected 20 years early.

UNIVERSIDAD AUTONOMA DE CHILE

UA

neutral		μ	anio	n	μ	Ea				
CSi	(Х ³ П)	0.8831	l-CSi ⁻	$(X^2\Sigma^+)$	0.6885	2.42				
c-C ₂ Si	$(X^{1}A_{1})$	2.9587	l-C₂Si⁻	(X ² П)	3.8003	1.41				
c-C ₃ Si	$(X^{1}A_{1})$	3.8671		(Y ² П)	4.1481	2.49				
l-C ₃ Si	$(X^3\Sigma^-)$	4.4016	1-0391	(A-11)		2.89				
l-C ₄ Si	$(X^1\Sigma^+)$	6.2111	l-C₄Si⁻	(X ² П)	5.9792	2.31				
l-C ₅ Si	$(X^3\Sigma^-)$	6.4927	l-C₅Si⁻	(X ² П)	6.0682	3.30				
l-SiCH	(X ² П)	0.5771	l-SiCH ⁻	$(X^1\Sigma^+)$	0.3089	3.88				
l-SiC ₂ H	(X ² П)	1.1201	l-SiC ₂ H ⁻	$(X^3\Sigma^-)$	4.2681	1.32				
l-SiC ₃ H	(X ² П)	1.1074	l-SiC ₃ H ⁻	$(X^1\Sigma^+)$	2.9949	2.70				
l-SiC ₄ H	(X ² П)	1.3061	l-SiC ₄ H ⁻	$(X^3\Sigma^-)$	7.3735	1.69				
l-SiC ₅ H	(X ² П)	0.5122	l-SiC ₅ H ⁻	$(X^1\Sigma^+)$	4.8991	2.98				

universidad AUTONOMA DE CHILE

UA

neutro	neutral		anion		μ	Ea
CSi	(X ³ П)	0.8831	l-CSi ⁻	$(X^2\Sigma^+)$	0.6885	2.42
c-C ₂ Si	(X^1A_1)	2.9587	l-C ₂ Si⁻	(X ² П)	3.8003	1.41
c-C ₃ Si	(X^1A_1)	3.8671	LC Sit	(Y 2II)	4.1481	2.49
l-C ₃ Si	$(X^3\Sigma^-)$	4.4016	1-0301	(A 11)		2.89
l-C ₄ Si	$(X^1\Sigma^+)$	6.2111	l-C₄Si⁻	(Х ² П)	5.9792	2.31
l-C ₅ Si	$(X^3\Sigma^-)$	6.4927	l-C₅Si ⁻	(Х ² П)	6.0682	3.30
l-SiCH	(Х ² П)	0.5771	l-SiCH⁻	$(X^1\Sigma^+)$	0.3089	3.88
l-SiC ₂ H	(X ² П)	1.1201	l-SiC ₂ H ⁻	$(X^3\Sigma^-)$	4.2681	1.32
l-SiC ₃ H	(Х ² П)	1.1074	l-SiC ₃ H ⁻	$(X^1\Sigma^+)$	2.9949	2.70
l-SiC ₄ H	(X ² П)	1.3061	l-SiC ₄ H ⁻	$(X^3\Sigma^-)$	7.3735	1.69
l-SiC ₅ H	(X ² П)	0.5122	l-SiC ₅ H ⁻	$(X^1\Sigma^+)$	4.8991	2.98

neutral		μ	anio	n	n µ	
CSi	(Х ³ П)	0.8831	l-CSi ⁻	$(X^2\Sigma^+)$	0.6885	2.42
c-C ₂ Si	(X^1A_1)	2.9587	l-C ₂ Si⁻	(X ² П)	3.8003	1.41
c-C ₃ Si	(X^1A_1)	3.8671		(X 2II)	4.1481	2.49
l-C ₃ Si	$(X^3\Sigma^-)$	4.4016	1-0351	(A ⁻ 11)		2.89
l-C ₄ Si	$(X^1\Sigma^+)$	6.2111	l-C₄Si⁻	(X ² П)	5.9792	2.31
l-C ₅ Si	$(X^3\Sigma^-)$	6.4927	l-C₅Si⁻	(X ² П)	6.0682	3.30
l-SiCH	(Х ² П)	0.5771	l-SiCH ⁻	$(X^1\Sigma^+)$	0.3089	3.88
l-SiC ₂ H	(X ² П)	1.1201	l-SiC ₂ H ⁻	$(X^3\Sigma^-)$	4.2681	1.32
l-SiC ₃ H	(Х ² П)	1.1074	l-SiC ₃ H ⁻	$(X^1\Sigma^+)$	2.9949	2.70
l-SiC ₄ H	(X ² П)	1.3061	l-SiC ₄ H ⁻	$\overline{(X^3\Sigma^-)}$	7.3735	1.69
l-SiC ₅ H	(Х ² П)	0.5122	l-SiC ₅ H ⁻	$(X^1\Sigma^+)$	4.8991	2.98

neutro	neutral		anion		μ	Ea
	1	1	1	1		
CSi	(Х ³ П)	0.8831	l-CSi ⁻	$(X^2\Sigma^+)$	0.6885	2.42
c-C ₂ Si	(X ¹ A ₁)	2.9587	l-C ₂ Si ⁻	(X ² П)	3.8003	1.41
c-C ₃ Si	(X^1A_1)	3.8671		(X 2II)	4.1481	2.49
l-C ₃ Si	$(X^3\Sigma^-)$	4.4016	1-0391	(A-11)		2.89
l-C ₄ Si	$(X^1\Sigma^+)$	6.2111	l-C₄Si⁻	(Х ² П)	5.9792	2.31
l-C ₅ Si	$(X^3\Sigma^-)$	6.4927	l-C₅Si⁻	(Х ² П)	6.0682	3.30
l-SiCH	(Х ² П)	0.5771	l-SiCH ⁻	$(X^1\Sigma^+)$	0.3089	3.88
l-SiC ₂ H	(X ² П)	1.1201	l-SiC₂H ⁻	$(X^3\Sigma^-)$	4.2681	1.32
l-SiC ₃ H	(X ² П)	1.1074	l-SiC ₃ H ⁻	$(X^1\Sigma^+)$	2.9949	2.70
l-SiC ₄ H	(X ² П)	1.3061	I-SiC ₄ H ⁻	$(X^3\Sigma^-)$	7.3735	1.69
l-SiC ₅ H	(X ² П)	0.5122	l-SiC ₅ H ⁻	$(X^1\Sigma^+)$	4.8991	2.98

$Ea \rightarrow RCCSD(T)$ -F12A/aug-cc-pVTZ

neutre	tl	μ	anio	n	μ	E _a	
CSi	(X ³ ∏)	0.8831	1-CSi	(X ² Σ ⁺)	11.5921	2.42	
c-C₂Si	$(X^1\dot{A}_1)$	2.9587	l-C ₂ Si	(X ² П)	5.6931	1.41	
c-C ₃ Si l-C ₂ Si	$(X^{1}A_{1})$ $(X^{3}\Sigma^{-})$	3.8671 4.4016	_1-C ₃ Si ⁻	(X ² П)	2.4308	2:49 2.89	
I-C ₄ Si	$(X^1\Sigma^+)$	6.2111	l-C ₄ Si	(X ² Π)	2.2349	-2.31	
l-C ₅ Si	(X ³ Σ ⁻)	6.4927	1-C ₅ Si	(X ² Π)	5.2765	3.30	
		E ASTER					
I-SiCH	(Х ² П)	0.577 1	l-SiCH ⁻		0.3089	3.88	C ₂ H ⁻
l-SiC ₂ H	(X ² П)	1.120. 1	1-SiC ₂ H	(X ³ Σ-)	13651	1.32	
I-SiC ₃ H	(Х ² П).	1.107 4	l-SiC ₃ H ⁻	\rightarrow	2.9949	2.70	C ₄ H ⁻
· I-SiC ₄ H	(X ² П)	1.306	SiC ₄ H	(X ³ Σ-)	10.8913	1.69	
I-SiC ₅ H	(Х ² П)	0.512 2	l-SiC ₅ H ⁻		4.8991	2.98	C ₆ H ⁻

neutre	u	μ.	anio	n	μ	Ea	
CSi	(X ³ II)	0.8831	1-CSi ⁻	(X ² Σ ⁺)	11.5921	2.42	
c-C ₂ Si	(X^1A_1)	2.9587	I-C ₂ Si	(X ² П)	5.6931	1.41	
c-C ₃ Si l-C ₃ Si	(X^1A_1) $(X^3\Sigma^2)$	3.8671 4.4016	_l-C ₃ Si	(Х ² П)	2.4308	2.49 2.89	
I-C₄Si	$(X^1\Sigma^+)$	6.2111	l-C ₄ Si	(X ² Π)	2.2349	2.31	
l-C ₅ Si	$(X^3\Sigma^2)$	6.4927	- 1-C ₅ Si-	(X ² Π)	5.2765	3.30	
		C-ASTER					
I-SiCH	(X ² 11)	0.577 1		(X ¹ Σ ⁺)		3.88	
l-SiC ₂ H	(Х ² П)	1.120. 1	1-SiC ₂ H	(X ³ 2)*	18651	1.32	
l-SiC ₃ H	(X ² II)	1.107 4	l-SiC ₃ H ⁻	(X ¹ Σ ⁺)	2.9949	2.70	C ₄ H ⁻
· · ·l-SiC ₄ H	(X ² E)	1.306 1	LSiC₄H	(X ³ Σ-)	10.8913	1.69	
I-SiC ₅ H	(X ² П)	0.512	I-SiC ₅ H-	(X ¹ Σ ⁺)	4.8991	2.98	

 R_1

Si₁

UNIVERSIDAD AUTONOMA DE CHILE

c1-SiC₃H⁻

 X^1A'

UA

l2-

SiC₃H

c4-SiC₃H⁻

 X^1A'

 X^1A

 H_5

c7-

SiC₃H⁻

 X^1A'

c5-

SiC₃H⁻

 X^1A'

International Symposium and Workshop on Astrochemistry-Campinas July 3-8

 R_3

 H_5

$$B_{0} = B_{e}^{CBS} + \Box B_{e}^{core} + \Box B_{vib}$$
$$\Box B_{e}^{core} = B_{e}^{(aug-cc-pCVQZ, n=1)} - B_{e}^{(aug-cc-pVQZ, n=8)}$$
$$\Box B_{e}^{core} \Box 17 \text{ MHz} \qquad \Box B_{vib} \Box 2 \text{ MHz}$$

$B_0 (l-SiC_3H^-) = 2620.74 \text{ MHz} \quad B_0 (l-SiC_3D^-) = 2459.81 \text{ MHz}$ $\Box = 2.9707 \text{ Debyes}$ $CASSCF/aug-cc-pV5Z \qquad Basis set \qquad n^a \quad l-SiC_3H^- \quad l-SiC_3D^-$

Basis set	n ^a	<i>l</i> -SiC ₃ H ⁻ B _e	<i>l</i> -SiC ₃ D ⁻ B _e
RCCSD(T)-F12A aug-cc-pVTZ	8	2598.33	2438.24
aug-cc-pVTZ	8	2578.13	2419.55
aug-cc-pVQZ	8	2594.03	2434.29
aug-cc-pV5Z	8	2599.57	2439.36
CBS ^b		2605.16	2444.36
aug-cc-pCVQZ	4	2603.00	2442.46
aug-cc-pCVQZ	1	2611.51	2450.45

a) n=number of frozen core orbitals

b) CBS =complete basis set (aug-cc-pV \square Z)

Inostroza et al. Journal of chemical physics 133, 184107 (2010)

S CHILE

Vertical excitation energies of *l*-SiC₃H⁻

<i>l</i> -SiC ₃ H		<i>l</i> -SiC ₃ H ⁻		
Sym	Er	Sym	Er	
	MRCI		MRCI	
X²∏	0.0 ^b	$X^{1}\Sigma^{+}$	0.0 ^d	
$2\Sigma^+$	2.01	1Π	3.09	
$^{2}\Delta$	5.66	1Δ	3.29	
2 ∑ -	5.43	1Σ-	3.22	
$4\Sigma^+$	3.43	3∑+	2.48	
$^{4}\Delta$	3.82	3П	3.10	
$4\Sigma^{-}$	4.19	$^{3}\Delta$	2.66	
4Π	2.21	3∑-	2.85	

Ea= 2.70 eV

MRCI/aug-cc-pVTZ

UNIVERSIDAD AUTONOMA DE CHILE

c) Ea=-493.205588 a.u.; d) Ea=-403.597248 a.u.

Vertical excitation energies of *l*-SiC₃H⁻

l-SiC₃H⁻

l-SiC₃H

Sym	Er	Sym	Er
	MRCI		MRCI
$X^2\Pi$	0.0 ^b	$X^{1}\Sigma^{+}$	0.0 ^d
$2\Sigma^+$	2.01	1Π	3.09
$^{2}\Delta$	5.66	$^{1}\Delta$	3.29
²∑-	5.43	1Σ-	3.22
$4\Sigma^+$	3.43	3∑+	2.48
$^{4}\Delta$	3.82	3П	3.10
4∑-	4.19	$^{3}\Delta$	2.66
4∏	2.21	3∑-	2.85

<u>Ea= 2.70 e</u>V

UNIVERSIDAD AUTONOMA DE CHILE

c) Ea=-493.205588 a.u.; d) Ea=-403.597248 a.u.

<i>l</i> -SiC ₃ H		<i>l</i> -SiC ₃ H ⁻		
Sym	Er(eV)	Sym	Er(eV)	
	MRCI		MRCI	
X²∏	0.0 ^b	$X^{1}\Sigma^{+}$	0.0 ^d	
$2\Sigma^+$	2.01	1Π	3.09	
$^{2}\Delta$	5.66	1Δ	3.29	
²∑-	5.43	1Σ-	3.22	
$4\Sigma^+$	3.43	3∑+	2.48	
$^{4}\Delta$	3.82	3П	3.10	
4 <u></u>	4.19	³ Δ	2.66	
4Π	2.21	³ ∑-	2.85	

Ea= 2.70 eV

MRCI/aug-cc-pVTZ

UNIVERSIDAD AUTONOMA DE CHILE

c) Ea=-493.205588 a.u.; d) Ea=-403.597248 a.u.

Relative stability

SiC ₃ H		E _r B3LYP	E _r CCSD(T)	SiC ₃ H,+		E _r B3LYP	E _r CCSD(T)
r R2 R1 R	11-SiC ₃ H С _{ωу} Х ² II	0.0	0.0	r R2 R1 R	$\begin{array}{l} \textit{l1-SiC_3H^+} \\ C_{\infty v} \ X^1 \Sigma^+ \end{array}$	0.55	0.93
R1 R1	<i>rb1</i> - SiC ₃ H C ₁ X ² A'	2.50	2.11	R1 R2 A1	<i>rb1-</i> SiC ₃ H ⁺ C ₅ X ¹ A'	3.58	3.17
	<i>rb2</i> -SiC ₃ H C ₅ X ² A''	0.62	0.23		rb2-SiC₃H ⁺ C₅ X ¹ A'	0.82	0.86
(a) F(B3LVP/cc-pvTZ) = -404	<i>rb3</i> -SiC ₃ H C _{2v} X ² B ₁	0.69	0.31 TZ)=-403 566239		rb3-SiC ₃ H ⁺ C _{2v} X ¹ A ₁	0.00	0.00

Monthly Notices of the Royal Astronomical Society MNRAS 443, 3127–3133 (2014)

Reaction Channels and spectroscopic constant of astrophysical relevant silicon-bearing molecules SiC₃H⁺ and SiC₃H

Reaction Channels and spectroscopic constant of astrophysical relevant silicon-bearing molecules SiC_3H^+ and SiC_3

Type Reaction		$[\Delta E(\text{kcal mol}^{-1})]$	$\Delta E(eV)^a$	$[\Delta E(\text{kcal mol}^{-1})^b]$	$\Delta E ({ m eV})]^b$
Charge-exchange (10–300K)	H^+ + 11-SiC ₃ H \rightarrow 11-SiC ₃ H ⁺ + H	201.5	8.74	203.8	8.84
	$H^+ + rb3-SiC_3H \rightarrow rb3-SiC_3H^+ + H$	170.9	7.41	175.4	7.61
	H^+ + rb2-SiC ₃ H \rightarrow rb2-SiC ₃ H ⁺ + H	192.5	8.35	195.2	8.46
Ion-neutral (10-41 000K)	H_3^+ + rb-SiC ₃ -3s \rightarrow rb3-SiC ₃ H ⁺ + H ₂	<u> </u>	<u> </u>	<u> </u>	<u> </u>
	$H_3^+ + rb-SiC_3-3s \rightarrow rb2-SiC_3H^+ + H_2$	- 106.9	- 4.63	- 109.6	- 4.75
	H_3^+ + rb-SiC ₃ -3s \rightarrow rb1-SiC ₃ H ⁺ + H ₂	- 53.7	- 2.33	- 46.9	-2.03
	H_3^+ + rb-SiC ₃ -2s \rightarrow rb3-SiC ₃ H ⁺ + H ₂	- 132.2	<u> </u>	- 135.9	<u> </u>
	$H_3^+ + rb-SiC_3-2s \rightarrow rb2-SiC_3H^+ + H_2$	- 112.3	- 4.87	- 114.5	- 4.97
	H_3^+ + rb-SiC ₃ -2s \rightarrow 11-SiC ₃ H ⁺ + H ₂	- 110.8	- 4.80	- 115.0	- 4.99
	H_3^+ + $H_2^ H_3^+$ + $H_2^ H_3^+$ + H_2^-	<u> </u>	<u> </u>	- 135.4	<u> </u>
	$H_3^+ + 11$ -SiC ₃ -1t \rightarrow rb2-SiC ₃ H ⁺ + H ₂	- 112.7	- 4.89	- 113.9	- 4.94
	$H_3^+ + 11$ -SiC ₃ -1t $\rightarrow 11$ -SiC ₃ $H^+ + H_2$	- 111.2	- 4.82	- 114.4	- 4.96
Dissociative recombination (10–300K)	$rb3-SiC_3H^+ + e^- \rightarrow rb-SiC_3-3s + H$	232.9	10.09	235.1	10.19
	$rb2-SiC_3H^+ + e^- \rightarrow rb-SiC_3-2s + H$	218.5	9.47	220.5	9.56
	$rb2-SiC_3H^+ + e^- \rightarrow rb-SiC_3-3s + H$	212.9	9.23	215.6	9.35
	11 -SiC ₃ H ⁺ + e ⁻ \rightarrow 11 -SiC ₃ -1s + H	290.1	12.6	281.3	12.2

^acalculated at CCSD(T)/cc-pvTZ and ^bCCSD(T)/6-311g(d,p) level of theory.

Reaction Channels and spectroscopic constant of astrophysical relevant silicon-bearing molecules SiC ₂ H ⁺ and SiC ₂ H								
Charge-exchange (10–300K)	$[\Delta E(\text{kcal mol}^{-1})]$	$\Delta E(\mathrm{eV})^a$						
$\begin{split} \mathrm{H^{+}} + \mathrm{l1}\text{-}\mathrm{SiC_{3}H} &\rightarrow \mathrm{l1}\text{-}\mathrm{SiC_{3}H^{+}} + \mathrm{H} \\ \mathrm{H^{+}} + \mathrm{rb3}\text{-}\mathrm{SiC_{3}H} &\rightarrow \mathrm{rb3}\text{-}\mathrm{SiC_{3}H^{+}} + \mathrm{H} \\ \mathrm{H^{+}} + \mathrm{rb2}\text{-}\mathrm{SiC_{3}H} &\rightarrow \mathrm{rb2}\text{-}\mathrm{SiC_{3}H^{+}} + \mathrm{H} \end{split}$	201.5 170.9 192.5	8.74 7.41 8.35						
Ion-neutral (10-41 000K)								
$\mathrm{H_3}^+ + \mathrm{rb}\text{-}\mathrm{SiC_3}\text{-}\mathrm{3s} \rightarrow \mathrm{rb}\mathrm{3}\text{-}\mathrm{SiC_3}\mathrm{H}^+ + \mathrm{H_2}$	- 126.7	- 5.50						
$H_3^+ + rb - SiC_3 - 2s \rightarrow rb3 - SiC_3H^+ + H_2$	- 132.2	- 5.73						

Large amplitude vibrations of Urea in gas phase

N. Inostroza, M.L. Senent*

Departamento de Química y Física Teóricas, Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006, Spain

Although Urea rarely appears listed as an interstellar species it constitutes an important prebiotic molecule whose astrophysical detection is always expected. A recent and extensive search towards the high mass hot molecular core Sgr B2 (N–LMH) has been performed with the CARMA and IRAM 30 m radio-telescopes observing several line frequencies coincident with Urea transitions [1]. It has been tentatively detected in infrared spectra of interstellar ices [2].

Chemical Physics Letters 524 (2012) 25-31

Potential Energy Surface PES

 $V = \frac{1}{2} \sum_{i} f_{ij} Q_i Q_j + \frac{1}{6} \sum_{i} \sum_{j} \sum_{k} f_{ijk} Q_i Q_j Q_k + \frac{1}{24} \sum_{i} \sum_{k} \sum_{k} \sum_{l} f_{ijkl} Q_i Q_j Q_k Q_l + \dots$

 $2 \stackrel{\frown}{\underset{i}{\frown}} \stackrel{jj \cong i \cong j}{\underset{j}{\frown}} 6 \stackrel{\frown}{\underset{j}{\frown}} \stackrel{\bigcup}{\underset{k}{\frown}} \stackrel{jj \cong i \boxtimes j \cong k}{\underset{j}{\boxtimes}} \stackrel{1}{\underset{k}{\boxtimes}} 24 \stackrel{\frown}{\underset{j}{\frown}} \stackrel{\frown}{\underset{j}{\frown}} \stackrel{\frown}{\underset{k}{\frown}} \stackrel{\bigcup}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \cong i}{\underset{j}{\boxtimes}} \stackrel{1}{\underset{j}{\boxtimes}} \stackrel{1}{\underset{k}{\boxtimes}} \stackrel{jj \cong k \cong i}{\underset{j}{\boxtimes}} \stackrel{1}{\underset{j}{\boxtimes}} \stackrel{1}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes}} \stackrel{1}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes}} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \cong k}{\underset{j}{\boxtimes} \stackrel{jj \boxtimes i}{\underset{j}{\boxtimes} \stackrel{jj \boxtimes i}{\underset{j}{$

RCCSD(T)-F12/ cc-pVTZ-F12

GRID

1409 geometries : Bond distances R^{ref} +0.03 Å \ge R \ge R^{ref} -0.03Å Torsional angles θ ref + 5.0° \ge $\theta \ge \theta$ ref - 5.0° *Planar bending angles*= τ +5.0° **FIT**

 $R^2=1.0, \sigma=0.4 \text{ cm}^{-1}$

FIT-ESPEC (Senent 2007)

Figure 2. Conversion channels and transition states for the processes (a) Urea-I \rightarrow Urea-II; (b) Urea-I \rightarrow Urea-I.

2794 cm⁻¹ (torsional barrier) and 395 cm⁻¹ (inversion barrier)

Urea I

TABLE 1: Total electronic energies (*Ea*, in a.u.), relative energies (E_R , in cm⁻¹), structural parameters (distances in Å; angles in degrees), rotational constants (in MHz) and dipole moments (in Debyes) corresponding to the two conformers of UREA.

_		145					
		2.43		Urea	H (C ₂)	Urea-	II (C _s)
	C(1)		aug-cc-pVTZ	MP2	CCSD	MP2	CCSD-SYM
			Ea	-224.9106098	-224.9217913	-224.9091131	-224.9191171
N(3)		H(2)	E _R	0.0	0.0	328.48	510.61
			C-0	1.2191	1.2118	1.2206	1.2139
	113.7		C-N	1.3838	1.3835	1.3789	1.3777
			N-C-O	123.16	123.11	122.61	122.85
			H5-N-C	117.14	116.8	120.08	117.36
Urea II	0(4)		H6-N-C	112.86	112.75	114.11	117.36
		2 46	θ	5.7861	5.8338	176.185	176.82
•		2.40	β1	38.5597	39.3752	30.3674	29.4000
C _s	C(1)		$\overline{\theta_2}$	5.7930	5.8349	3.8263	3.1800
			β2	38.5606	39.3762	30.3949	29.4000
			Α	11136.50	11229.32	11219.06	11244.3954
			В	10422.07	10419.66	10393.14	10458.7141
			С	5433.06	5456.16	5421.96	5446.2361
	114.6	6	μ	4.03	3.95	4.67	4.64

 $\hat{H}_{\text{LAM}} = -\sum_{i}^{n} \sum_{i}^{n} \left(\frac{\partial}{\partial_{qj}}\right) B_{ij}\left(\frac{\partial}{\partial_{qj}}\right) + V(q_1, q_2, \dots, q_n) + V^1(q_1, q_2, \dots, q_n)$

Urea

	2.47 2.50	2.49	2.57 2.60	2.54 2.94	2.97	2.57	2.96
	YY	A.A.				and the second	
	114.3	114.8	111.7	115.1	114.7	112.9	118.7
	ETW1	ETW2	ETT1	ETT2	ETT3	ETT4	ETT5
Sym.	C ₁	C _{2v}	C ₁	C ₁	C _s	C _{2v}	C _{2v}
C-0	1.2208	1.2221	1.2158	1.2109	1.2042	1.2100	1.2002
C-N2	1.3860	1.3709	1.4020	1.4067	1.4442	1.4413	1.4475
C-N3	1.3685	1.3708	1.4020	1.4067	1.4442	1.4413	1.4475
N2-C-O	122.75	122.58	124.16	122.44	122.66	123.53	120.67
N3C-O	122.85	122.58	124.16	122.44	122.66	123.53	120.67
H5-N2-C	112.48	123.56	117.67	117.67	106.60	106.57	108.80
H6-N2-C	117.90	116.97	117.67	117.67	106.60	106.57	108.80
H7-N3-C	123.08	123.55	108.40	111.44	106.60	106.57	108.80
H8-N3-C	117.32	116.98	108.40	111.44	106.60	106.57	108.80
θ_1	6.4090	0.0	1.247	3.040	270.0	90.0	270.0
β_1	38.120	0.0	33.862	33.358	62.662	62.601	58.161
θ_2	1.0780	0.0	90.0	270.0	90.00	90.0	270.0
β_2	0.000	0.0	55.654	48.895	62.662	62.601	58.161
μ	4.5140	4.7095	2.8386	4.9981	3.2763	0.2148	5.2990
E _a	-224.90921	-224.90834	-224.89205	-224.88606	-224.86408	-224.85917	-224.85917
E	306.4	497.7	4072.6	5388.4	10212.2	10660.9	11290.5

UNIVERSIDA AUTONOM DE CHIL	AD AA LE		Ure	a		
•	Urea-I (C	(2)				
С 🆕	Sym	MP2		CCSD(T)	exp	Assign.
2	~	ω	v	ω	[19]	
Y	A	3723	3560	3685	3559	NH stretch
v ₂	A	3600	3452	3573	3460	NHstretch
<i>v</i> ₃	А	1800	1757	1789	1776	CO stretch
v_4	А	1635	1592	1639	1604	HNH ben
v_5	А	1183	1150	1191	1157	HNH ben
v_6	А	959	942	949	1032	CN stretch
<i>v</i> ₇	Α	575	421	602	582.4 ^b	NH2 wag
v_8	А	475	472	472		NCN ben
V9	Α	377	338	377		Torsion
<i>v</i> ₁₀	В	3723	3560	3685	3533	NHstretch
v_{11}	В	3595	3450	3570	3434	NHstretch
<i>v</i> ₁₂	В	1640	1594	1645	1749	HNH ben
v_{13}	В	1420	1384	1417	1394	CN stretch
v_{14}	В	1057	1011	1064	1157	HNH ben
v_{15}	В	782	726	784	775	CO wag
v ₁₆	В	581	556	582	571	NCO ben
V ₁₇	В	545	495	547	550.6 ^b	NH2 wag
v ₁₈	В	450	380	450	445.1 ^b	Torsion
ZPVE		14060	13420	14011		

^a Basis set: aug-cc-pVTZ; *ZPVE* and LAM frequencies, in bold.

^b Experiments in Ar-matriz [15].

The grids for each electronic state consisted of 743 distinct geometries and these were used to fit our best QFFs. **CCSD(T)** or **RCCSD(T)** /cc-pVX Z, X = 3,4,5,

$$E(l) = E(TQ5) + E(rel - nrel) + E(mtcc - nmtcc),$$

scalar relativistic effects

core-correlation correction

The QFFs were used together with second-order **perturbation theory (PT) (SPECTRO)** and **variational methods (MULTIMODE)** to solve the nuclear Schrödinger equation.

X¹A' cyclic singlet Natalla Inostroza , Xinchuan Huang , and Timothy J. Lee. J. Chem. Phys. 135 , 244310 (2011)

Accurate ab initio quartic force fields of cyclic and bent HC2N isomers

 X^1A' bent singlet

 X^1A' cyclic singlet

Isomeric energy differences

HC ₂ N	ΔE^{a}	ΔE^{b}	μ^{c}
Ground state triplet	0.0	0.0	3.05
Cyclic singlet	5.7	7.8	3.06
Bent singlet	10.6	11.1	1.71

^aEnergies came from the best *ab intio* QFFs, 3-pt(tz,qz,5z)+core+rel.

^bIncludes anharmonic zero-point energies corrections.

^cDipole moments computed at CCSD(T)/cc-pVQZ level of theory.

Relative energies (in kcal/mol) Natalia Inostroza , Xinchuan Huang , and Timothy J. Lee. J. Chem. Phys. 135 , 244310 (2011)

 $X^{3}A''$ ground state triplet

Ground 2-pt state 2-pt triplet (tz,qz) A_0 2586574 B_0 11016 C_0 10951 D_J 0.0042	2-pt (qz,5z) 2 518 363	3-pt (tz,qz,5z)	5z +core+rel	3-pt (tz,qz,5z) +core	3-pt (tz,qz,5z)	3-pt (tz,qz,5z)	Previous v	vork
triplet (tz,qz) A_0 2 586 574 B_0 11 016 C_0 10 951 D_J 0.0042	(qz,5z) 2 518 363	(tz,qz,5z)	+core+rel	+core				
$ \begin{array}{cccc} A_0 & 2586574 \\ B_0 & 11016 \\ C_0 & 10951 \\ D_J & 0.0042 \\ \end{array} $	2 518 363				+core+rel	+core+rel	Experiment	Theory
A	11 001 10 935 0.0042	2 496 121 10 995 10 928 0.0042	2 611 229 11 037 10 972 0.0042	2 632 677 11 040 10 975 0.0042	2 614 091 11 043 10 979 2 0.0042	;	4 350 000 ^b 11 027 ^b 10 986.41 ^a 10 986.4 ^b 0.0041 ^b	10938.6 ^e
\vec{B}_o C_o	26	14091 11043 10979]	435 11 10986. <u>6</u>	$0000^{(b)} \\ 027^{(b)} \\ 41^{(a)} 10 \\ .4^{(b)} $	9 <u>8</u> 1	0938.6 ^(e)

	This y	<u>Work</u>	Previous Work		
	PT	VC	Experiment	Theory	
	3-pt (tz, <u>qz,5z</u>) +core+rel	3-pt (tz,qz,5z) +core+rel			
<u>v</u> 1(A')	3243.2	3271.2	3229.0(°)- 3247(d)	3246.66 ^(e) 3245.2 ^(f)	
$\underline{v}_2(A')$	1722.8	1615.5 ^{&}	1735(°)-1727, 1735,	1733.71(e)1851.0(f)	
<u>v</u> ₃ (A') [#]	1159.3	1177.4	1757(^d)	1178.57(e)1113.9(f)	
$\underline{\upsilon}_4(\mathbf{A'})^{\mathrm{al}}$	276.6	305.8	1178(°)	610.4 ^(f)	
<u>v</u> ₅ (A')	489.0	556.2	458(°)-383(d)-365(a)	336.2 ^(f)	
<u>v</u> ₆ (A")	476.8	561.4	369(°)-187(d)-145(a)	362.1 ^(f)	

a)From microwave spectra ref. [23]; b) From microwave spectra ref. [17]; c) From argon matrix IR spectra ref. [16] d) From High resolution infrared spectra ref. [25]; e) MR-ACPF/cc-pVQZ; f) From ref. [34] at CASSCF/DZP

Accurate ab initio quartic force fields of cyclic and bent HC2N isomers

X ¹ A' bent singlet				РТ			VCI 3-pt (tz,qz,5z) +core+rel
Al CIC2 A2 SINGLET	2-pt (tz,qz)	2-pt (qz,5z)	3-pt (tz,qz,5z)	5z +core+rel	3-pt (tz,qz,5z) +core	3-pt (tz,qz,5z) +core+rel	
$\overline{A_0}$	540 126	539186	538717	542 306	543 795	543 130	
B_0	11069	11 052	11 045	11 093	11098	11 099	
C_0	10833	10816	10809	10857	10861	10863	
HC1	1.1065	1.1067	1.1069	1.1406	1.1048	1.1049	
C1C2	1.3910	1.3920	1.3924	1.3913	1.3881	1.3881	
C2N	1.1765	1.1777	1.1782	1.1755	1.1758	1.1756	
A1(HC1C2)	109.49	109.41	109.38	108.59	109.70	109.64	
A2(C1C2N)	172.44	172.43	172.43	172.46	172.52	172.49	
$10^{9}H_{J}$	-1.9452	-1.9856	-1.9954	-1.9573	-1.9578	-1.9741	
H_K	0.4942	0.4802	0.4749	0.5040	0.5156	0.5083	
$10^{6}H_{JK}$	2.4776	2.5099	2.5173	2.4845	2.4918	2.5012	
H_{KJ}	-0.0020	-0.0021	-0.0021	-0.0021	-0.0021	-0.0021	
$10^{11}h_1$	6.7268	6.5112	6.4392	6.7592	6.8086	6.7709	
$10^{10}h_2$	1.5934	1.5959	1.5957	1.5935	1.5925	1.5988	
$10^{11}h_3$	3.2622	3.2423	3.2350	3.2604	3.2545	3.2630	
D_J	0.0050	0.0050	0.0050	0.0051	0.0050	0.0051	
D_K	228.25	225.56	224.45	231.19	233.91	232.41	
D_{JK}	0.9403	0.9373	0.9360	0.9444	0.9461	0.9459	
$10^{3}d_{1}$	-0.0868	-0.0868	-0.0868	-0.0867	-0.0864	-0.0867	
$10^{3}d_{2}$	-0.0214	-0.0213	-0.0212	-0.0214	-0.0213	-0.0213	
$v_1(A')^a$	2928.8	2926.7	2925.8	2932.9	2935.3	2933.8	2934.9
$v_2(A')^{b}$	2043.3	2045.1	2045.3	2048.7	2050.9	2050.7	2050.0
$\upsilon_3(A')$	1040.4	1042.5	1042.8	1044.4	1045.0	1046.9	1046.9
$\upsilon_4(A')^c$	949.1	956.8	958.3	953.8	957.5	958.4	957.0
$\upsilon_5(A')$	310.4	321.1	323.3	318.3	325.9	325.1	323.9
$v_6(A'')$	443.2	442.6	442.3	445.4	446.1	445.7	444.2

^aFermi resonance type 2 $v_1 = v_2 + v_4$.

Accurate ab initio quartic force fields of cyclic and bent HC2N isomers

$X^1 A'$ cyclic singlet			PT				
A2 N2C3	2-pt (tz,qz)	2-pt (qz,5z)	3-pt (tz,qz,5z)	5z +core+rel	3-pt (tz,qz,5z) +core	3-pt (tz,qz,5z) +core+rel	3-pt (tz,qz,5z) +co re+rel
$\overline{A_0}$	40710	40 599	40 557	40715	40755	40744	
B_0	34 4 1 4	34 347	34 322	34 489	34 497	34 505	
C_0	18 584	18 541	18 525	18607	18618	18618	
HC1	1.0798	1.0799	1.0800	1.0787	1.0786	1.0786	
C1N2	1.3005	1.3020	1.3026	1.2998	1.2997	1.2996	
N2C3	1.4152	1.4171	1.4179	1.4148	1.4138	1.4141	
C1C3	1.4066	1.4082	1.4087	1.4052	1.4050	1.4047	
A1(HC1N2)	137.87	137.84	137.84	137.93	137.97	137.94	
A2(C1N2C3)	62.22	62.21	62.20	62.18	62.20	62.18	
$10^{7}H_{J}$	-2.8738	-2.9026	-2.9074	-2.8896	-2.9053	-2.9132	
$10^{6}H_{K}$	18.495	18.533	18.596	18.619	18.153	18.336	
$10^{6}H_{JK}$	6.5936	6.6283	6.6488	6.6516	6.5510	6.6001	
$10^{6}H_{KJ}$	-21.723	-21.796	-21.876	-21.910	-21.399	-21.605	
$10^{10}h_1$	801.93	792.82	793.75	810.24	781.45	789.14	
$10^{10}h_2$	1886.4	1886.4	1885.4	1891.1	1892.1	1895.6	
$10^{10}h_3$	-347.91	-353.36	-357.60	-359.28	-337.83	-345.77	
D_J	0.0471	0.0469	0.0469	0.0470	0.0472	0.0472	
D_K	0.0904	0.0885	0.0876	0.0882	0.0902	0.0893	
D_{JK}	0.0954	0.0961	0.0966	0.0970	0.0949	0.0960	
d_1	-0.0263	-0.0263	-0.0263	-0.0264	-0.0264	-0.0264	
d_2	-0.0090	-0.0090	-0.0090	-0.0090	-0.0090	-0.0090	
$v_1(A')^a$	3122.7	3118.6	3117.4	3126.1	3125.8	3124.7	3126.0
$\upsilon_2(A')^b$	1571.1	1567.0	1565.7	1572.8	1573.9	1572.5	1576.5
$v_3(A')$	1292.0	1288.6	1287.6	1294.4	1294.1	1293.6	1294.1
$\upsilon_4(A')$	1012.5	1012.0	1011.6	1013.7	1015.9	1015.1	1014.4
$\upsilon_5(A')$	823.9	821.3	820.4	825.1	825.9	824.9	832.4
$\upsilon_6(A'')$	899.6	894.5	893.3	898.8	896.4	896.0	901.3

^aFermi resonance type 1 $v_1 = 2v_2$. Natalia Inostrozance Xinchtian Huang , and Timothy J. Lee. J. Chem. Phys. 135 , 244310 (2011)

ROVIBRATIONAL SPECTROSCOPIC FOR ISOTOPOLOGUES OF CYCLIC AND BENT SINGLET HC2N ISOMERS

H13CCN	HC13CN	HCC15N

DCNC	H13CNC	HC15NC	HCN13C

Natalia Inostroza, R. Fortenberry, X. Huang, and Timothy J. Lee, The Astrophysical Journal, 778:160 (7pp), 2013 December

CHILE

ROVIBRATIONAL SPECTROSCOPIC FOR ISOTOPOLOGUES OF CYCLIC AND BENT SINGLET HC2N ISOMERS

 $X^{1}A'$ bent singlet

CcCR Rotational Constants (MHz), and Fundamental Vibrational Frequencies (cm⁻¹) for the Bent, Singlet HC₂N Isomer Isotopologues

	DCCN		H ¹³ CCN		HC ¹³ CN		HCC ¹⁵ N	
$\overline{A_0}$	307257		537301		542421		543095	
B_0	10366		10695		11099		10755	
C_0	10010		10473		10862		10533	
	VPT2 ^a	VCI	VPT2 ^b	VCI	VPT2 ^c	VCI	VPT2 ^b	VCI
$v_1(a')$	2187.4	2187.2	2925.5	2925.4	2936.1	2932.9	2933.2	2933.5
$v_2(a')$	2042.3	2041.0	2043.3	2042.4	2016.0 ^d 1948.0 ^d	2015.5 ^d 1950.5 ^d	2031.5	2029.6
$v_3(a')$	1001.6	1001.3	1035.9	1034.6	1043.1	1042.8	1039.6	1039.3
$v_4(a')$	797.1	797.7	939.6	938.7	952.8	950.4	956.8	954.1
$v_5(a')$	311.5	309.7	323.8	320.6	316.8	313.9	323.3	320.2
$v_6(a'')$	401.7	401.1	444.4	442.4	436.1	434.3	443.0	441.1

Notes.

^a The $v_2 = 2v_3$, $v_4 = 2v_6$, and $v_6 = 2v_5$ Fermi resonances are included.

^b $v_1 = v_2 + v_4$, $v_2 = 2v_3 = 2v_4 = v_4 + v_3$, $v_3 = 2v_6$, and $v_4 = 2v_6$ Fermi resonance polyads.

^c Require the $v_1 = v_2 + v_4$, $v_4 = 2v_6$, and $v_2 = 2v_3 = 2v_4 = v_4 + v_3$ Fermi resonance polyads.

^d These states are coupled at 50%–50% from the $v_2 = v_4 + v_3$ and $v_2 = 2v_3$ bases.

 X^1A' cyclic singlet

CcCR Rotational Constants (MHz) and Fundamental Vibrational Frequencies (cm⁻¹) for the Cyclic, Singlet HC₂N Isomer Isotopologues

	DCCN		H ¹³ CCN		HC ¹³ CN		HCC ¹⁵ N	
$\overline{A_0}$	42505		43549		41784		43783	
B_0	27137		31172		31934		30843	
C_0	16508		18106		18038		18034	
	VPT2 ^a	VCI	VPT2 ^b	VCI	VPT2 ^b	VCI	VPT2 ^b	VCI
$v_1(a')$	2364.2	2364.8	3125.4	3123.3	3146.6	3139.7	3137.9	3135.7
$v_2(a')$	1530.7	1535.8	1548.0	1551.3	1565.0	1569.4	1552.8	1556.3
$v_3(a')$	1270.3	1271.0	1272.9	1273.5	1274.4	1274.9	1288.6	1289.2
$v_4(a')$	961.9	965.6	1011.3	1010.3	1003.1	1002.2	1004.6	1003.6
$v_5(a')$	665.7	669.6	821.9	829.5	817.5	825.0	820.3	827.8
$v_6(a'')$	712.3	715.5	888.2	893.4	895.2	900.6	895.8	901.1

Notes.

^a Fermi resonance $v_1 = 2v_3$, $v_2 = 2v_6$, and $v_3 = 2v_6$.

^b Fermi resonance $v_1 = 2v_2$ and $v_2 = 2v_5$.

Natalia Inostroza, R. Fortenberry, X. Huang, and Timothy J. Lee, The Astrophysical Journal, 778:160 (7pp), 2013 December

Cyanomethylene HCCN

Natalia Inostroza-Pino¹, Partha P. Bera^{2,3}, Xinchuan Huang^{2,4}, and Timothy J. Lee^{2*}

Electronic excitations energies and oscillator strengths of the quasi-linear ground triplet state ³A' HCCN and singlet cyclic ¹A' *c*-HCCN isomers were computed using EOM-CCSDT B3LYP and ω B97-X, CIS CIS(D) //cc-pVXZ, aug-cc-pVXZ and d-aug-cc-pVXZ (X=T or Q) basis sets. Electronic excitation energies : both isomers show intense ultraviolet-visible (UV-Vis) spectra for electronic transitions with large oscillator strengths at the B3LYP, ω B97-X, and equations-of-motion coupled cluster levels.

The triplet ground state is a floppy molecule, letting a conjugation between π -electron of the CN bond to the electrons of the HC-part. Due to this, it is expected that a mixture of ${}^{3}A''$ and ${}^{3}\Sigma$ - electronic states would produce lines in the visible region of the electromagnetic spectrum.

In dust we trust ??

$CH_{3}OH + OH \rightarrow CH_{3}O + H_{2}O,$ $CH_{3}OH + OH \rightarrow CH_{3}OH + H_{2}O,$

International Symposium and Workshop on Astrochemistry-Campinas July 3-8

3LYP-6-31G

BOMD 30K

The gas-phase reaction between OH and CH3OH is an important contributor to the formation of interstellar CH3O. The role of grain-surface processes in the formation of CH3O, although it cannot be fully neglected, remains controversial

strochemistry school, May 2016

SPACE AND EARTH SCIENCES RESEARCH LABORATORY

IAUS 332: Astrochemistry VII Through the Cosmos from Galaxies to Planets March 20 to 24, 2017 Puerto Varas CHILE

http://newt.phys.unsw.edu.au/~mar iac/IAUS332/

UA

Thanks for you attention