

Sputtering analysis of astrophysical solids by Plasma Desorption Mass Spectrometry - PDMS

E. F. da Silveira, J.M. da Silva Pereira, C.R. Ponciano.

(Master Dissertation- 2015)

Sputtering analysis of astrophysical solids by Plasma Desorption Mass Spectrometry - PDMS

- 1- Optical Spectroscopies the main source of information
- 2- How Mass Spectrometry can be used in Astrophysics?
- 3- MS of cosmic rays
- **4- Mass spectrometers in space**
- 5- MS of cosmic samples (our data)
- 6-MS of analogues (our data)
- **7- Final Comments**

Because sources are too distant,

most of the information from the Universe comes by electromagnetic waves

Ex.: image acquired by the Very Large Telescope, Chile

n

Thor's Helmet Nebula (near Sirius – Canis Major)

The blue color reveals an oxygen cloud expanding

Thor's Helmet Nebula (near Sirius – Canis Major)

Optical Spectroscopies are very important but, nevertheless,

Relevant cosmic information also comes via:

- gravitation (now: waves !)
- neutrinos
- electrons
- cosmic rays (ions)
- cosmogenic and cosmic materials
- space missions

More analytical techniques are necessary, in particular

Mass Spectrometry (MS)

Direct use:

- a) cosmic rays* arriving on Earth and on artificial satellites
- b) secondary ions produced by natural ionizing radiation impinging on planets, satellites, grains, asteroids and comets
- c) cosmogenic materials (e.g. ¹⁴C produced in atmosphere)
- d) cosmic samples (measurements in situ) and meteorites or material brought to Earth by missions

Indirect use:

study of cosmic analogue samples

* Primary CR: e⁻, H, He and heavy (C \rightarrow Fe) ions; Secondary CR: Li, mesons, e⁺

How MS can be used in Astrophysics?

lhomso ass spectrum How to get his?

Primary Cosmic Ray (CR) Species

9

Solar Wind & Galactic CR

Solar wind on Earth orbit

Galactic cosmic rays

SW & GCR Energy Distributions

Solar Wind & Galactic CR

* Particularly for the long manned missions

The Viking Gas Chromatograph Mass Spectrometer

(1971)

A gas chromatograph uses a thin capillary fiber known as a column to separate different types of molecules, based on their chemical properties.

→ Searching for Life on Mars

AMS: Searching for antimatter, dark matter and measuring cosmic rays

antiproton / proton ratio

(2015 AMS-02 data)

antiproton secondary production from ordinary cosmic ray collisions (expected)

AMS: preparing for Mars mission. Measuring GeV cosmic rays

antiproton / proton ratio

(2015 AMS-02 data)

antiproton secondary production from ordinary cosmic ray collisions (expected)

Alpha Magnetic Spectrometer: p/p

 antiproton
 proton
 AMS
 @ Internl. Space Station (ISS)

 AMS: 60 billion cosmic ray events after 5 years

AMS: a magnetic, TOF and position sensitive spectrometer

Mars Science Laboratory 2011

Analyzing the surfaces of rocks and other samples directly on Mars' surface.

Laser MS of neutral molecules in Mars soil

c) Cosmogenic materials

The ¹⁴C / ¹²C ratio gives the sample age

c) Cosmogenic materials

The ¹⁴C / ¹²C ratio gives the sample age

Carbonaceous chondrite type – Hanh et al., Science 239 (1988) 1523

Apolo 11 - 1969 Regolith SiO_2 et lare Tranquillitatis al.

Moon rocks

Lunar Mission	Sample Returned	Year
pollo 11	22 kg	1969
pollo 12	34 kg	1969
pollo 14	43 kg	1971
pollo 15	77 kg	1971
pollo 16	95 kg	1972
pollo 17	111 kg	1972
Luna 16	101 g	1970
Luna 20	55 g	1972
<u>Luna 24</u>	170 g	1976

•maria \rightarrow basaltic lava \rightarrow olivine $\rho \sim 4 \text{ g/cm}^3$ •highlands \rightarrow anorthosite $\rho \sim 2.6 \text{ g/cm}^3$ anorthite

Armstrong's walk on the Moon (on the cat's eye)

main ion-solid mechanisms

5- Heating and Sublimation

PDMS – Plasma Desorption MS

mass spectrum

TOF used in our measurements

Sputtering of silicates

- Analyzed by TOF mass spectrometer
- At room temperature

²⁵²Cf

MCP detector (start)

sample

- MCP detector (stop)

PDMS – Plasma Desorption MS

Silica / Quartz (from Apollo mission)

Silica / Quartz (brought by Apollo mission)

Anorthite (brought by Apollo mission)

e) Cosmic analogue samples

Moon silicates

e) Cosmic analogue samples

nepheline (20 nm) evaporated on a Si wafer (room temperature)

Nepheline

e) Cosmic analogue samples

Jadeite

PDMS Analysis of Meteorites

1. Isna (Egipt, 1970)

Chondrite: carbonaceous – CO3

2. Allende (Mexico, 1969)

Chondrite: carbonaceous – CV3

3. Zagami (Nigeria, 1962)

Acondrite: Shergotito (Martian).

PDMS Analysis of Meteorites

Example :

Positive ion mass spectrum

PDMS analysis of meteorites: Isna, Allende and Zagami

Example :

Negative ion mass spectra

PDMS analysis of meteorites: Isna, Allende and Zagami

Example :

Negative ion mass spectra

Sputtering of ices

Van de Graaff Accelerator – PDMS sputtering analysis line

Water - н́

Η

Surface Science, 569 (2004) 149-162

(H₂O)_n H₃O⁺ emission decreases as the temperature increases

N – 1.5 MeV beam

k – decay parameter

Ammonia - NH₃

most abundant emitted ions :

H⁺, NH₄⁺, NH₃⁺

H⁻, NH₂⁻, NH⁻

Hydrogen bridges:

H₂O e NH₃ eject

intense series of

ionic clusters

main series :

 $(NH_3)_n NH_4^+$

 $(NH_3)_n NH_2^-$

Int. J. Mass Spectrom. 253 (2006) 112-121

Ices without H :

Oxygen

D

~ 65 MeV ²⁵²Cf fission fragments

Molecular clusters are ejected into the gas phase \rightarrow Radio telescopes ?

Int. J. Mass Spectrom., 251 (2006) 1-9

Carbon Dioxide - O=C=O

abundants: O₂⁺, CO₂⁺, C⁺, CO⁺ CO₃⁻, O⁻

> dominants: $(CO_2)_nO_2^+$ $(CO_2)_nCO_3^-$

J. Am. Soc. Mass Spectrom. 17 (2006) 1120-1128

Mixture O₂ + N₂

Main series: $(O_2)_n O_2^+, (O_2)_n O^+, (O_2)_n O_3^+$ $(N_2)_n N_2^+, (N_2)_n N^+$ $O_n^-, O_n N_2^-$

Synthesis of: NO⁺, NO₃⁺, O_nNO⁺, O_nN₂⁺ NO⁻, N₂O⁻

Journal of Mass Spectrometry, 43 (2008) 1521-1530

H₂O ice Sputtering Yield

Figure 5. Comparison between total sputtering⁸ and ion yields of water clusters corresponding to bombardment of MeV N ions on water ice at a temperature of 80 K.

J Phys Chem C 115 (2011) 12005

CH₄ Radiolysis : FTIR vs MS

Astronomy & Astrophysics , A531 (2011) A160

CH₃OH Radiolysis - FTIR

Formation cross section σ_f

MNRAS, 418 (2011) 1363

CR impacts : Qualitative Results

Chemistry:

• Hot chemistry (10⁴ K) in very cold material (10 - 100 K)

 $RT \rightarrow 1/40 \; eV \;$; $keV \rightarrow 4000 \; K$

• Fast chemistry (ps) in solids

No thermodynamical equilibrium

• New pathways for Organic Chemistry:

The bombardment of CO by ions has an interesting and relevant property: the formation of <u>carbon chains</u>

Biochemistry

"Strategical" molecules for the prebiotic synthesis,

like HCN and OCN, are <u>easily</u> formed by fast ion impact.

main ion-solid mechanisms

Final comments : dependence on **S**

From the sputtering and radiolysis experiments:

1- Ion beams interact with matter and transfer energy with a characteristic rate called Stopping Power (S).

Final comments : dependence on S

From the sputtering and radiolysis experiments:

1- Ion beams interact with matter and transfer energy with a characteristic rate called Stopping Power (S).

Final comments : dependence on m and T

N₂O radiolysis (only 2 elements)

Final comments : dependence on m and T

Final comments : dependence on m and T

CREDITS (lunar rocks & analogues)

- CIMAP/GANIL (France): T. Langlinay, P. Boduch, H. Rothard
- **INAF Catania:** G. Strazzulla, M.S. Palumbo
- INAF Arcetri : J.R. Brucato
- PUC-Rio: C. Ponciano, J.M.S. Pereira,
 - G. C. Almeida

CREDITS (ions + ices)

PUC-Rio: C. Ponciano, V. Schmidt, C. Mejia, G. C. Almeida
CEFET-Rio: A.L.F. Barros, R. C. Pereira
ON: D. P. P. Andrade
IFRJ: E. Seperuelo Duarte
UNIVAP: S. Pilling
UFSC: L. Farenzena

Nitriles: UFRJ: M.L. Rocco, H.M. Boechat-Roberty, F. Ribeiro

> Darmstadt Univ. : Karl Wien GANIL (France): P. Boduch, H. Rothard, A. Domaracka

Thank you for the attention !

Thanks for the attention !

INEspaço Instituto Nacional de Estudos do Espaço

CAPES

Acknowledgments (\$): FAPERJ, CAPES / COFECUB, CNPq (INEspaço)

55

ISWA – 3-8 July 2016

Mass Spectrometry in Astrophysics SUMMARY

MS has been used to analyze ions coming from the outer space and arriving in Earth, Moon and in orbiting spacecrafts

 \rightarrow Meteorites, lunar rocks, Mars surface, etc are extensively examined by standard MS techniques

Isotope ratios and isotope dating (e.g. ²³⁸U - ²⁰⁶Pb or ¹⁴C) give very useful information on the sample origin

 \rightarrow Cosmic analogue samples have been produced in laboratory and analyzed by MS

Such experiments show in particular what to expect from *in situ* measurements

Enio F. da Silveira - Van de Graaff Lab.

a) What Cosmic Rays are ?

- Primary Cosmic Rays are very energetic (10³ to 10²² eV) charged particles that traverse outer space
- Basically, they are:
 - light ions: protons + deuterons (87%) and α particles (11%)
 - heavy 4n ions : ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ⁴⁰Ar, ⁴⁰Ca and ⁵⁶Fe (Ni)
 - electrons (~1%)

[unstable ions or neutrals are excluded: neutrons, neutrinos, X-rays, γ rays]

After collision with interstellar matter and atmosphere,

Secondary Cosmic Rays are formed. They are constituted by:

- Li, Be, B, neutrons (formed by spallation)
- pions, kaons, mesons, positrons and γ rays

Solar Neutrinos in Earth : 6 x 10¹⁰ / cm² s

¹⁴C is a produced nuclide ⁵⁸

What for?

Φ (particles . cm^{-2.} s⁻¹. (MeV/nucleon)⁻¹)

A&A (2011)

Genesis of the Fe-Ni meteorites (6%)

Fe and Ni are abundant in planet cores

PDMS Analysis of Meteorites

