

Understanding the Molecular Complexity of Astrochemistry Laboratory synthesis of prebiotic species

Nigel J Mason The Open University The Open University

Core Questions for Astrochemistry & Astrobiology

- Where are the building blocks of life synthesised ? ISM or on planet?
- Are the conditions for such synthesis common/universal ?
- European Astrobiology Roadmap. Published 2016

Outline

- Ice studies
- Introduction summary of previous talks
- Laboratory studies Methodology
- Electron induced chemistry some conclusions
- Atmospheric Chemistry
- Urey Miller synthesis
- Plasma studies ion chemistry

>140 Interstellar and Circumstellar Molecules

2	3	4	5	6	7	8	9	10	11
H_2	<i>C</i> ₃	c-C₃H	C_5	C₅H	C₀H	CH ₃ C ₃ N	CH₃C₄H	CH ₃ C ₅ N?	HC ₉ N
AIF	C_2H	I-C ₃ H	C₄H	$I-H_2C_4$	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	$(CH_3)_2CO$	
AICI	C_2O	C ₃ N	C ₄ Si	C_2H_4	CH₃C2H	СН3СООН	(CH ₃) ₂ O	NH ₂ CH ₂ COOH ?	212
<i>C</i> ₂	C ₂ S	C ₃ O	$I-C_3H_2$	CH ₃ CN	HC ₅ N	C ₇ H	CH₃CH₂OH		$ C_6H_6$
СН	CH ₂	C ₃ S	$c-C_3H_2$	CH ₃ NC	NH ₂ CH ₃	H_2C_6	HC ₇ N		
CH⁺	HCN	C_2H_2	CH₂CN	CH₃OH	HCOCH ₃	CH₂OHCHO) С ₈ Н		13+
CN	HCO	CH2D+?	CH₄	CH₃SH	c-C ₂ H ₄ O				HC ₁₁ N
СО	HCO⁺	HCCN	HC ₃ N	HC ₃ NH ⁺	CH ₂ CHOH	N //			PAHs
CO⁺	HCS+	HCNH+	HC NC	нс,сно	-			Glycine ?	C 60⁺
CP	HOC+	HNCO	НСООН	> NH ₂ CHO					
CSi	H ₂ O	HNCS	H ₂ CHN			Acetic Acid			
HCI	H ₂ S	HOCO+	H ₂ C ₂ O	J					
KCl	HNC	H₂CO	H ₂ NCN			_IP			
NH	HNO	H2CN	HNC ₃			R 1	2		
NO	MgCN	H ₂ CS	SiH ₄						Benzene
NS	MgNC	H₃O⁺	H₂COH⁺						
NaCl	N ₂ H+	NH ₃				Glycolaldehyde			
OH	N ₂ O	SiC ₃		Q		, ,	•	=0-0=0-0=0-0	=0-0=0-0=0
PN	NaCN							Cyanopolyynes	
50	005		Formic Acid						
50+ ciN1	50_2								
SIN	C-SIC2								
Sis									
<u>CS</u>	H ₂ +								
HF	SiCN								
SH									
FeO	AINC							National Radio Astron	omy Observatory

http://www.cv.nrao.edu/~awootten/alimois.html

Astrochemistry

How is such rich inventory of molecules created?

We have a dusty grain picture

Molecular synthesis on dust grains

Building products delivered to planets

But

Remember reactions can occur in gas phase

First molecules had to be formed without dust (no stars)

And molecules of life may be synthesised in planetary atmospheres

Ion-molecule reactions

Ion-Molecule reactions are a typical example of a reaction that do not require energy input

e.g. $NH_3^+ + H_2 \rightarrow NH_4^+ + H$ $Ar^+ + H_2 \rightarrow ArH^+ + H$ $He^+ + H_2 \rightarrow He + H^+ + H$ $H_2^- + H \rightarrow H + H_2 + e_-$

Ion molecule studies

CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) to study neutral-neutral reactions and energy transfer processes in the gas phase down to temperatures as low as ~10 K. (Rennes)

But lets go back to dust ...

Gas phase experiments can not explain all the chemistry in the ISM

E.g. the formation of H_2 the most common molecule in the ISM can not be formed in the gas phase in quantities required

Instead it is formed by reactions on the surface of little dust grains ...

Chemistry on Dust grains

- Some of these grains are covered with an icy mantle formed by freezing out of atoms/molecules from the gas phase
- Hence we need to explore ice chemistry !

w

22

n

m

The ices in the mantle are bombarded with cosmic rays, lons, solar UV, electrons.
Chemistry occurs making molecules.
Desorption back to gas phase

The Open University

How to make the ISM in the lab?

We need to mimic the conditions of the ISM as accurately as we can

We need

- Mimic of dust grain surfaces
- ISM Is COLD
- ISM is empty
- To mimic radiation sources
- Plus we need methodology to probe results !

Making nothing !!

- Space is empty
- More empty than we can reproduce in the laboratory
 - Typically experiments that explore such astrochemistry iare performed at pressures of P~10⁻⁸
 - 10⁻¹⁰ mbar
 - Still > a million times higher than ISM!
- But why is this a problem ??

and it

Making nothing

- Even at P~10⁻⁸ 10⁻¹⁰ mbar there is enough residual gas to freeze out on your sample and form a contamination layer !!
- Thus during your experiment you are depositing molecules from vacuum
- Most common contaminants are WATER, CO/CO₂ and hydrocarbons –all molecules you may want to explore and can play role in chemistry
- Best vacuum after bake our remove water and dry pumps reduce hydrocarbon content
- Distinguish background CO/CO_2 by using ¹³C _{as} target carbon (just more expensive)
- It is expensive making nothing and time consuming !!!

Getting (really) cold

- How do make surface cold ----10K ??
- Use coolant
- LN₂ takes you to 77K
- Liquid helium (4K) but not 100% efficient – IR radiation from walls of chamber heat your sample
- Liquid helium is expensive (more than whisky per litre !) world shortage So recycle it

Dust grain mimics

- What are they made of ?
- Carbon ?
- Silicates

One good substrate is

• Olivine (Mg,Fe)₂SiO₄.

But is non conducting

Dust Grain mimics

- But the grains are small micron or nano scale !!
- To date experiments have used bulk samples Cm in size (few, VERY FEW exceptions)
- Is chemistry and ice morphology same on micron/nano surface as on bulk ?
- How does struture effect diffusion? Desorption ? etc

IR of water ice on carbon dust in a levitatation trap

• Spectra match water ice specta recorded by AKARI in star forming region.

What about time ?

- In space events take time
- 1 molecule absorbed a day/week/month !
- 1 collision every few years !
- Yet in lab we speed it up !
- Are ices formed so slowly in space same morphology as ices formed in lab ?
- Do collisions scale with fluence can we replicate synthesis in lab via fluence ?
- We have to assume time is not important is this true ?
- This requires modelling of molecule by molecule ice film growth

Porous amorphous ice

Compact amorphous ice and sputtering

How do we monitor chemistry ?

• Spectroscopy --

InfraRed (via FTIR or Raman) or Ultraviolet

• If we desorb from surface may use Mass spectrometry

TPD Temperature Programmed Desorption)

•

Experimental Programme at the OU

OU Portable System:

- Transmission UV & FTIR Spectroscopy and Processing
- Designed to be transported to central facilities → Synchrotrons, RAL, QUB

OU Static System:

- TPD, RAIRS and Processing
- Molecular synthesis with electrons and photons → E-gun, UV lamp

Energetic Sources

• VUV light

Ion beams

Electron beams

Experimental studies of chemical processing of astrochemical

ices

First we need to find a mimic of star light !

Stars are fuelled by nuclear reactions

We can't use these in a laboratory

ASTRID2

"The Ultimate Synchrotron Radiation Source"

ISA- Institute for Storage Ring Facilities, Department of Physics and Astronomy, University of Aarhus

Energy = 580 MeV Circumference = 45.7 m Lifetime = Infinite (top-up)

Anita.Dawes@open.ac.uk

How do we study Cosmic Ray (CR) induced chemistry ?

To study CR chemistry we need to;

- 1. Produce beams of CRs protons, alpha particles and electrons
- 2. Accelerate CRs to high energies

Use particle accelerators - Van der Graf Accelerators

Modern version ECRIS Ion source

9.0 – 10.5 GHz Electron Cyclotron Resonance Ion Source at Belfast

Role of electrons ?

To date most processing studies have explored UV irradiation ok for diffuse clouds but dense clouds ?

UV and cosmic rays induce secondary electrons

Cosmic rays as secondary electron source

Major product of cosmic rays are Secondary electrons and they can induce chemistry

Indeed one CR may produce an avalanche of 10⁴ electrons whose energy vary from close to CR energy to thermal energy.

So what do we know?

Experiments are exploring synthesis routes.

Irradiation of $H_2O:CO_2$ ice

Before irradiation

Irradiation of $H_2O:CO_2$ ice

After irradiation for 1 hour

Warm-up after H⁺ Irradiation of H₂O:CO₂ ice

Warm-up after H⁺ Irradiation of H₂O:CO₂ ice

Warm-up after H⁺ Irradiation of H₂O:CO₂ ice

Warm-up after H⁺ Irradiation of H₂O:CO₂ ice

50 -

T(K)

250

200 -

150

100 -

Warm-up after Irradiation of H₂O:CO₂ ice **This is Martian ice cap**

50

T(K)

250

200

150

100 -

Electron Induced Chemistry

Give some examples of how electrons irradiating ice can induce synthesis.

'Simple' single ices are not simple !

 \Box Oxygen \rightarrow to ozone

• Methanol ice \rightarrow CO and CO₂ H₂CO and 'complex'

Look at irradiation of pure ices of oxygen Ozone formation

Mechanisms for electron induced astrochemistry

Ozone monomer synthesis

Inter cluster chemistry !

$$(O_2...O_2) \rightarrow (O_2...O...O) \rightarrow (O_3...O)$$

Ozone monomer synthesis

Temperature dependence ;

Yield largest at lowest Temperature

Ozone complexes

• 0₃ - 0

Co-deposit two isomers

Formation of isotopomers (11K)

Desorption

Mass spectrometric detection of species but

- Heating can induce synthesis eg ozone formation in O₂ ice
 - Molecules can
 fragment upon
 desorption mass
 fragment may not
 be parent species

The Open University

So can we go on to make building blocks of life?

How to create an amino acid ?
How to create a sugar in space ?

Synthesis in the ice mantles ?

Formation of ethylene glycol in pure methanol ice HOH₂C-CH₂OH

Formation of methyl formate CH₃OHCO

Chemistry of Planets

05th Jan 2006

Create exotic compounds – Ammonium carbamate

Fig. 5-5: IR spectra of NH_3 :CO₂ (1:1), (a) post-irradiation (58 min) and after warm-up (220 - 270 K); and (b) comparing Frasco's actual 1964 experimental spectrum at 248 K

Formation of formamide HCONH₂ from irradiation of ammonia/methanol ice

Irradiation of methylammine and carbon dioxide ice makes glycine simple amino acid

Electron Induced Chemistry - summary

Experiments reveal;

Electron irradiation is efficient at molecular synthesis (>UV per event ?)

 Can make complex molecules from simple 'ingredients'
 Low energy electrons (< photo dissociation energy) meV to 10eV can induce chemistry (via dissociative electron attachment == anion chemisty_so no barriers

Electron induced chemistry

Can make larger molecules e.g. methyl formate; ethylene glycol; ammonium carbamate; glycine; all from simple Methanol/ammonia ices

Strong Temperature and morphology dependence

Does it play a role in ISM Chemistry Question to answer?

So big question ?

How large are the molecules you can synthesize ?

 Can make sugar and amino acids
 RIBOSE (Meinert et al Science 352, pp. 208-212 (2016)

How do you make the real 'building blocks of life' ? The nuclear bases?

Nucleobases

Adenine
Guanine
Thymine
Cytosine

Paired in DNA
AT
CG

but there is still much to do /learn

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns – there are things we do not know we don't know.

-Donald Rumsfeld

Route 2 to molecular synthesis; Form on the planet The UREY MILLER Experiment

$CH_4 + NH_3 + H_2$ + energy

Glycine Amino acid

Urey Miller Results

- Urey-Miller was run for a week, liquid was extracted from the flask
- Analysed with paper chromatogram
- 3 Amino acids identified, Glycine, αalanine and β-alanine
- Hence it is possible to form prebiotic molecules from basic chemistry

Alanine (Ala)

Planetary atmospheres

One area of current and developing research is the study of planetary atmospheres

Observational studies

Models (e.g. climate models of Mars and Venus)

Exploring Titan's atmosphere -- the early Earth ?

Cassini-Huygens Mission to Titan

Titan's atmosphere – chemical composition

Hunter Waite et al **Science** <u>308</u> 982 (2005)

Titan's atmosphere – chemical composition

Titan's surface

Hunter Waite et al Science 308 982 (2005)

Nitrogen	N_2	90-97%
Argon	Ar	0-6%
Methane	CH_4	2-5%
Hydrogen	H_2	0.2%
Ethane	C_2H_6	10 p.p.m.
Carbon monoxide	со	~10 p.p.m.
Acetylene	C_2H_2	2 p.p.m.
Propane	C_3H_8	500 p.p.b.
Hydrogen cyanide	HCN	170 p.p.b.
Ethylene	C_2H_4	100 p.p.b.
Acetonitrile	CH ₃ CN	5 p.p.b.
Carbon dioxide	CO2	10 p.p.b.
Cyanoacetylene	HC ₃ N	10 p.p.b.
Methylacetylene	CH_3C_2H	5 p.p.b.
Cyanogen	C_2N_2	5 p.p.b.
Water vapour	H_2O	8 p.p.b.
Diacetylene	C_4H_2	1 p.p.b.

Question

What organic chemistry may be prevalent?

Can prebiotic molecules form in a Titan atmosphere ?

Use laboratory plasma/discharge as mimic of planetary atmosphere

- Study discharge in N₂/CH₄
- Make Titan dust analogues

Detect anions

Molecular formation in glow discharge

Form main hydrocarbons and nitriles seen in Titan atmosphere

Neutral chemistry Optical Emission --FTIR --or GC-MS

Neutral Chemistry – GC-MS

Ethane, ethene, cyanogens, propene, propane,propyne, propadiene, butenyene, butadiene, butadiyne, Acetonitrile,propenenitrile, benzene and toluene.

What about anions in Titan atmosphere?

The anion spectrum recorded by the Cassini-Huygens mission at an altitude of 953 km (Coates et al (2007)).

Experimental set-up for exploring anion formation in pointto-plane corona discharge

Mass spectra of negative ions extracted from point-to-plain corona discharges.

Anions in the discharge

The detection of CN-, CH₂CN-, C₃N-,CH₂CNand C₅N- anions

provides good evidence of the presence of HCN, CH₃CN,HC₃N, and HC₅N neutrals

Anions in Titan's atmosphere

Reproduceability

Different experiments do not agree on molecules synthesized and/or concentrations of species produced.

Cross Sections/rate constantsIll defined and hence hard to produce data for models

Same ingredients mixed and bake make different cakes

- Do experiments mimic nature?
- ISM surface chemistry is on micron sized dust grains is this replicated in bulk ice films?
- Time do laboratory experiments replicate the slow, unimolecular events of space ?
- Planetary atmospheres How to make a real mimic (no walls) Terrestrial atmospheric chambers

- Understand the physics/chemistry
- Role of (secondary) electrons and electron induced mechanisms compared to direct ion bombardment and UV absorption
- Morphology Surface cluster chemistry and three body reactions
- Synthesis when/where Direct or through diffusion of radicals (In-situ spectroscopy vs TPD results)

How do we know we have 'got it right'

Experiments tested against/predict observations
ALMA spatial chemical maps.

Towards biology

Energetic processing of prebiotic and biological molecules

Look for routes of formation and stability

Future Research/Challenges in astrochemistry astrobiology

How do prebiotic molecules assemble to form biomolecular systems e.g. DNA

Role of the host planet ?

■ Is life inevitable or rare ?

Core Questions for Astrochemistry & Astrobiology

- Where are the building blocks of life synthesised ? ISM or on planet?
- Are the conditions for such synthesis common/universal ?
- European Astrobiology Roadmap. Published 2016

and finally thanks to..

- Bhala Sivaraman
- Binu Nair
- PRL India

