

photo credit: Jenny Mottar

NASA Astrobiology Institute

Bay Area Environmental Research Institute

Sugars and Sugar Derivatives in Residues Produced from the UV Irradiation of Astrophysical Ice Analogs

> <u>Michel Nuevo</u>^{1,2}, Scott A. Sandford¹, John. M. Saunders³, and George Cooper¹ ¹NASA Ames Research Center, Moffett Field, CA, USA ²BAER Institute, Petaluma, CA, USA ³University of California, Santa Cruz, CA, USA

ISWA – Campinas, SP, Brazil – 4 July 2016

Outline

- Brief introduction to (Experimental) Astrochemistry
- Formation of complex organics in the laboratory
- Formation of sugars and sugar derivatives
- Summary
- Work in Progress
- Future Work

IR Observations of Molecular Clouds

IR Observations of Molecular Clouds

Astrophysical Ices

Observation of ices in the ISM & comets

Species	RAFGL 7009S ^a	NGC 7538 IRS9 ^b	W33A ^c	Elias 16 ^c	Comets ^c
H ₂ O	100	100	100	100	100
CO	15	12	8	25	5–30
CO ₂	21	15	13	18	3–20
CH₃OH	30	4–12	18	<3	0.3–5
CH ₄	3.6	2	0.4	_	1
NH ₃	_	13 ^d	15	≤ 9	0.1–1.8
OCN-	3.7	2	3.5	< 0.5	_

(a) d'Hendecourt et al. (1996) (b) Whittet et al. (1996)

(c) Gibb et al. (2000)(d) Lacy et al. (1998)

Astrophysical Ices

Observation of ices in the ISM & comets

Species	RAFGL 7009S ^a	NGC 7538 IRS9 ^b	W33A ^c	Elias 16 ^c	Comets ^c
H ₂ O	100	100	100	100	100
CO	15	12	8	25	5–30
CO ₂	21	15	13	18	3–20
CH₃OH	30	4–12	18	<3	0.3–5
CH ₄	3.6	2	0.4	_	1
NH ₃	_	13 ^d	15	≤ 9	0.1–1.8
OCN-	3.7	2	3.5	< 0.5	_

(a) d'Hendecourt et al. (1996) (b) Whittet et al. (1996) (c) Gibb et al. (2000)
(d) Lacy et al. (1998)

Astrophysical Ices

Observation of ices in the ISM & comets

Species	RAFGL 7009S ^a	NGC 7538 IRS9 ^b	W33A ^c	Elias 16 ^c	Comets ^c
H ₂ O	100	100	100	100	100
CO	15	12	8	25	5–30
CO ₂	21	15	13	18	3–20
CH₃OH	30	4–12	18	<3	0.3–5
CH ₄	3.6	2	0.4	_	1
NH ₃	_	13 ^d	15	≤ 9	0.1–1.8
OCN-	3.7	2	3.5	< 0.5	_

(a) d'Hendecourt et al. (1996) (b) Whittet et al. (1996) (c) Gibb et al. (2000)(d) Lacy et al. (1998)

Photoprocesses on Grains (Greenberg Model)

Bernstein et al. (1999)

Delivery of Organics to the Earth

Comets

Asteroids

Seen by ROSETTA (ESA)

Asteroids

Itokawa, seen and visited by Hayabusa (JAXA)

Interplanetary Dust Particles (IDPs)

U2012C-1I 1.8 g/cc 19 km/s

Ingredients to Make Life

Ingredients to Make Life

Vacuum chamber

H₂ UV lamp

Cryocooler

Bulb containing the gas mixtures

> Pressure in the chamber (torr)

UV photon energy: Lyman α (121.6 nm) + H₂ transitions (~150–170 nm)

Horse Head Nebula (Orion)

UV Irradiation of Ices – IR Spectroscopy

CH₃OH:NH₃ = 1:1 mixture, 46-hr UV irradiation @ 80 K $\sim 10^7$ years of irradiation in dense astrophysical environments

Position (cm ⁻¹)	Position (µm)	Identification of produced bands
3600–3000	3.33–3.78	Alcohols, amines, carboxylic acids (OH, NH)
3010-2815	3.32-3.55	Carbon chains (alkanes) (CH ₃ , CH ₂)
~2880	~3.47	$H_2CO(CH_2 str.)$
2342	4.27	CO ₂ (C=O str.)
~2260	~4.42	HNCO*
~2165	~4.62	OCN⁻ (C≡N str.)
2135	4.68	CO (C≡O str.)
~1850	~5.41	HCO• *
~1720	~5.81	H_2CO (C=O str.)
~1695	~5.90	NH ₂ CHO (C=O str.)**
~1387	~7.21	NH ₂ CHO**
~1305	~7.66	
~1245	~8.03	$H_2CO(CH_2 rock.)$

*HNCO and HCO[•] : no detection in ISM in the solid phase **NH₂CHO : tentatively detected

Warm up to Room Temperature

Chen et al. (2007)

Residues – IR Microscope Images

 $H_2O:CH_3OH:NH_3 = 1:1:1$ mixture

Nuevo (2012)

Residues – IR Microscope Images

 $H_2O:CO_2:NH_3 = 1:1:1$ mixture

Chen et al. (2008)

Residues – Mass Spectrometry

Organic residues produced from the UV irradiation of ice mixtures consisting of H_2O , CH_3OH , CO, CO_2 , NH_3 , etc., analyzed with laser-desorption mass spectrometry

Dworkin et al. (2004)

Every peak in this mass spectrum is potentially one new molecule!

Residues – IR Spectroscopy

(a) $CH_3OH:NH_3 = 1:1$ (46-hr UV irradiation) (b) $H_2O:CH_3OH:NH_3 = 1:1:1$ (47-hr UV irradiation)

Position (cm ⁻¹)	Position (µm)	Identification of bands
3600–3000	3.33–3.78	Alcohols, amines, carb. acids (OH, NH)
2950–2850	3.39–3.51	Carbon chains (alkanes) (CH ₃ , CH ₂)
~2935	~3.41	HMT ^a ($2v_{19}, v_2 + v_{19}$)
~2875	~3.48	HMT ^a (CH ₂ v_{18}), NH ₄ ⁺ b (N–H, 2 v_{4})
~2160	~4.63	Nitriles, isonitriles (C≡N str.) (?)
1745–1730	5.73–5.78	Esters (C=O str.)
1685–1665	5.93-6.01	Ketones, amides (C=O str.)
1600–1580	6.25-6.33	Carboxylates (salts) COO-
1470–1455	6.80–6.87	$NH_{4}^{+b}(v_{4})$
~1380	~7.25	ΗΜΤ ^a (CH, C–N ν ₂₁)
~1235	~8.10	
~1090	~9.17	Carboxylates (salts) COO-
~1005	~9.95	HMT ^a (C–N v ₂₂)

(a) Bernstein et al. (1995) ; (b) Wagner & Hornig (1950)

Position (cm ⁻¹)	Position (µm)	Identification of bands
3600–3000	3.33–3.78	Alcohols, amines, carb. acids (OH, NH)
2950–2850	3.39–3.51	Carbon chains (alkanes) (CH ₃ , CH ₂)
~2935	~3.41	HMT ^a ($2v_{19}, v_2 + v_{19}$)
~2875	~3.48	HMT ^a (CH ₂ v_{18}), NH ₄ ^{+ b} (N–H, 2 v_4)
~2160	~4.63	Nitriles, isonitriles (C≡N str.) (?)
1745–1730	5.73–5.78	Esters (C=O str.)
1685–1665	5.93–6.01	Ketones, amides (C=O str.)
1600–1580	6.25–6.33	Carboxylates (salts) COO-
1470–1455	6.80–6.87	$NH_{4}^{+b}(v_{4})$
~1380	~7.25	HMT ^a (CH, C–Ν ν ₂₁)
~1235	~8.10	
~1090	~9.17	Carboxylates (salts) COO-
~1005	~9.95	HMT ^a (C–N ν ₂₂)

(a) Bernstein et al. (1995) ; (b) Wagner & Hornig (1950)

Position (cm ⁻¹)	Position (µm)	Identification of bands	
3600–3000	3.33–3.78	Alcohols, amines, carb. acid	ds (OH, NH)
2950–2850	3.		(H_3, CH_2)
~2935	~(N .	
~2875	~		H, 2v ₄)
~2160	~1) (?)
1745–1730	5.		
1685–1665	5.		
1600–1580	6.		
1470–1455	6.		
~1380	\sim	$N \sim /$	
~1235	~{		
~1090	~9.17	Carboxylates (salts) COO-	
~1005	~9.95	HMT ^a (C–N v ₂₂)	

(a) Bernstein et al. (1995) ; (b) Wagner & Hornig (1950)

Residues – XANES Spectroscopy

X-ray Absorption Near-Edge Structure (XANES) 390-eV images of 4 residues produced from the UV irradiation of 4 different starting ice mixtures.

Nuevo et al. (2011)

Residues – XANES Spectroscopy

Full-range C-, N-, and O-XANES 1s spectra of the M1, M2, M3, and M4 residues

- All residues show significant contributions from C, N, and O organics
- N from NH₃ is very efficiently incorporated into organic molecules

Residues – XANES Spectroscopy

285.1 eV CH_x (aromatic) 285.8 eV C=C286.6 eV $C\equiv N$ or C=C-C=O287.4 eV CH_x (aliphatic) 288.7 eV O-C=O (carboxyl)

Nuevo et al. (2011)

399.3 eV C≡N 398.8 eV C=N (?) 401.7 eV CONH (amide) 531.3 eV C=O (ketone) 532.2 eV O-C=O (carboxyl)

Elemental composition: N/C 0.11–0.28 O/C 0.43–0.61 \Rightarrow ~2 times larger than Stardust particles

Formation of Complex Organics

Several amino acids detected in organic residues produced from the UV irradiation of different starting ice mixtures with different techniques.

Formation of Complex Organics

Starting with ice mixtures containing H_2O

- + carbon source(s) [CH₃OH, CO, CO₂, CH₄, and/or HCN]
- + nitrogen source(s) [NH₃, N₂, and/or HCN]
- + UV photo-irradiation at low temperature

Amino acids

Amphiphilic compounds

Bernstein et al. (2002a) Muñoz Caro et al. (2002) Nuevo et al. (2008)

Dworkin et al. (2001)

Formation of Complex Organics

Starting with ice mixtures containing H₂O + aromatic compounds [PAHs or *N*-heterocycles] + H₂, CH₃OH, CO₂, CH₄, NH₃, HCN, etc. + UV photo-irradiation at low temperature

Functionalized PAHs

Bernstein et al. (2002b,c)

Nucleobases

Nuevo et al. (2009, 2012, 2014) Materese et al. (2013) Sandford et al. (2014)

Sugars: Background & Motivation

- Laboratory experiments have shown that the photochemistry of simple ices (H₂O, CH₃OH, CO, CO₂, CH₄, NH₃, etc.) leads to the formation of amino acids, amphiphilic molecules, and nucleobases [e.g., Bernstein et al. 2002; Muñoz Caro et al. 2002; Dworkin et al. 2004; Nuevo et al. 2008, 2009, 2012, 2014; Materese et al. 2013].
- Carbonaceous meteorites contain a large variety of organic compounds, which include amino acids, amphiphilic molecules, nucleobases, sugars, and sugar derivatives [e.g., Cronin & Pizzarello 1997, 1999; Cooper et al. 2001; Dworkin et al. 2001; Callahan et al. 2011].

• But no systematic search for sugars and related compounds has been reported before this one. Now other people are also searching for the same compounds in residues [de Marcellus et al. 2015; Meinert et al. 2016].
Sugars: Background & Motivation

- Laboratory experiments have shown that the photochemistry of simple ices (H₂O, CH₃OH, CO, CO₂, CH₄, NH₃, etc.) leads to the formation of amino acids, amphiphilic molecules, and nucleobases [e.g., Bernstein et al. 2002; Muñoz Caro et al. 2002; Dworkin et al. 2004; Nuevo et al. 2008, 2009, 2012, 2014; Materese et al. 2013].
- Carbonaceous meteorites contain a large variety of organic compounds, which include amino acids, amphiphilic molecules, nucleobases, sugars, and sugar derivatives [e.g., Cronin & Pizzarello 1997, 1999; Cooper et al. 2001; Dworkin et al. 2001; Callahan et al. 2011].

• But no systematic search for sugars and related compounds has been reported before this one. Now other people are also searching for the same compounds in residues [de Marcellus et al. 2015; Meinert et al. 2016].

Sugars: Background & Motivation

Sugar-related compounds in Murchison and Murray

Cooper et al. (2001)

Sugars: Background & Motivation

- Laboratory experiments have shown that the photochemistry of simple ices (H₂O, CH₃OH, CO, CO₂, CH₄, NH₃, etc.) leads to the formation of amino acids, amphiphilic molecules, and nucleobases [e.g., Bernstein et al. 2002; Muñoz Caro et al. 2002; Dworkin et al. 2004; Nuevo et al. 2008, 2009, 2012, 2014; Materese et al. 2013].
- Carbonaceous meteorites contain a large variety of organic compounds, which include amino acids, amphiphilic molecules, nucleobases, sugars, and sugar derivatives [e.g., Cronin & Pizzarello 1997, 1999; Cooper et al. 2001; Dworkin et al. 2001; Callahan et al. 2011].

 But no systematic search for sugars and related compounds has been reported before this one. Now other people are also searching for the same compounds in residues [de Marcellus et al. 2015; Meinert et al. 2016].

- There are a LOT of possible compounds among all sugars, sugar acids, and sugar alcohols, not to mention dicarboxylic sugar acids, deoxy sugar derivatives, etc.
- Sugars and (most of) sugar derivatives are chiral molecules, so each of them exists in two enantiomeric forms (D and L).
- Each >C₄ sugar (and some sugar acids) can either be in a linear or a cyclic configuration.
- For C_5 and C_6 sugars (aldoses), cyclic forms include furanose and pyranose forms, and each of these forms has two anomeric conformations (α and β).

Sugars (Aldoses)

Sugars (Aldoses)

Sugars (Aldoses)

Sugars Acids & Sugar Alcohols

Sugar alcohols

Sugar acids

- There are a LOT of possible compounds among all sugars, sugar acids, and sugar alcohols, not to mention dicarboxylic sugar acids, deoxy sugar derivatives, etc.
- Sugars and (most of) sugar derivatives are chiral molecules, so each of them exists in two enantiomeric forms (D and L).
- Each >C₄ sugar (and some sugar acids) can either be in a linear or a cyclic configuration.
- For C₅ and C₆ sugars (aldoses), cyclic forms include furanose and pyranose forms, and each of these forms has two anomeric conformations (α and β).

- There are a LOT of possible compounds among all sugars, sugar acids, and sugar alcohols, not to mention dicarboxylic sugar acids, deoxy sugar derivatives, etc.
- Sugars and (most of) sugar derivatives are chiral molecules, so each of them exists in two enantiomeric forms (D and L).
- Each >C₄ sugar (and some sugar acids) can either be in a linear or a cyclic configuration.
- For C_5 and C_6 sugars (aldoses), cyclic forms include furanose and pyranose forms, and each of these forms has two anomeric conformations (α and β).

Experimental Set-up & Protocol

- Mix H₂O/CH₃OH vapors in a bulb to prepare H₂O:CH₃OH gas mixtures with different relative proportions (5:1 and 2:1).
- Deposit mixtures onto cold substrate (Al foil, ~10 K) and low pressure (~2×10⁻⁸ torr), and simultaneously irradiate with H₂ lamp for 18–20 h.
- After irradiation, warm up to RT and recover the foil with the residue, dissolve it in a solvent (liquid H_2O /other).
- Analyze with GC-MS (BSTFA derivatization).

- Use of non-chiral GC column, so D and L enantiomers cannot be separated (good!), but still 8–10 peaks for each standard!
- Add pyridine to standards (and samples) to decrease the number of peaks to 1–2 main peaks for each compound.
- Identifications rely on comparison of both retention times and mass spectra of commercial standards, however...

- Use of non-chiral GC column, so D and L enantiomers cannot be separated (good!), but still 8–10 peaks for each standard!
- Add pyridine to standards (and samples) to decrease the number of peaks to 1–2 main peaks for each compound.
- Identifications rely on comparison of both retention times and mass spectra of commercial standards, however...

- Use of non-chiral GC column, so D and L enantiomers cannot be separated (good!), but still 8–10 peaks for each standard!
- Add pyridine to standards (and samples) to decrease the number of peaks to 1–2 main peaks for each compound.
- Identifications rely on comparison of both retention times and mass spectra of commercial standards, however...

Nuevo et al. (submitted)

Nuevo et al. (submitted)

Nuevo et al. (submitted)

	Compounds	Relative abundance (Residues)	Relative abundance (Meteorites)
Sugar alcohols	Glycerol (C ₃)	100	100
	Erythritol + threitol (C_4)	1.4–6.6	1
	Ribitol + arabitol + xylitol (C_5)	0.1–1.3	(Not reported)
Sugars	Dihydroxyacetone (C ₃)	0–14.8	(Not reported)
	Threose + erythrose (C ₄)	0.4–6.5	(Not detected)
Sugar acids	Glyceric acid (C ₃)	0.1–0.7	50
	Erythronic + threonic acids (C_4)	0.1–0.9	2.5

~190 nmol

~

	Compounds	Relative abundance (Residues)	Relative abundance (Meteorites)		
Sugar alcohols	Glycerol (C ₃)	100	100		
	Erythritol + threitol (C_4)	1.4–6.6	1		
	Ribitol + arabitol + xylitol (C_5)	0.1–1.3	(Not reported)		
Sugars	Dihydroxyacetone (C ₃)	0–14.8	(Not reported)		
	Threose + erythrose (C_4)	0.4–6.5	(Not detected)		
Sugar acids	Glyceric acid (C ₃)	0.1–0.7	50		
	Erythronic + threonic acids (C_4)	0.1–0.9	2.5		

	Re ~190 nmol	~160 nmol/g	
	Compounds	Relative abundance (Residues)	Relative abundance (Meteorites)
Sugar alcohols	Glycerol (C ₃)	100	100
	Erythritol + threitol (C_4)	1.4–6.6	1
	Ribitol + arabitol + xylitol (C_5)	0.1–1.3	(Not reported)
Sugars	Dihydroxyacetone (C ₃)	0–14.8	(Not reported)
	Threose + erythrose (C ₄)	0.4–6.5	(Not detected)
Sugar acids	Glyceric acid (C ₃)	0.1–0.7	50
	Erythronic + threonic acids (C_4)	0.1–0.9	2.5

CH₃OH/ •CH₂OH

Sugars!!

ASTROCHEMISTRY

Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs

Com elia Meinert,¹⁺ Inliia Myrgorodska,^{1,2} Pierre de Marcellus,³ Thomas Buhse,⁴ Laurent Nahon,² Søren V, Hoffmann,⁵ Louis Le Sengeant d'Hendecourt,³ Uwe J. Meierhenrich¹⁺

Ribose is the central molecular subunit in RNA, but the prebiotic origin of ribose remains unknown. We observed the formation of substantial quantities of ribose and a diversity of structurally related sugar molecules such as anabinose, xylose, and lyxose in the room-temperatureorganic residues of photo-processed interstellar ice analogs initially composed of H₂O, CH₂OH, and NH₅. Our results suggest that the generation of numerous sugar molecules, including the aldopentose ribose, may be possible from photochemical and thermal treatment of cosmic ices in the late stages of the solar nebula. Our detection of ribose provides plausible insights into the chemical processes that could lead to formation of biologically relevant molecules in suitable plane tary environments.

NA is the genetic source code for all known living organisms. It is currently thought that DNA evolved from a primortilal ribonucleic acid RNA world state (I, 2), in which ribose chemically binds and orientates the complementary purine and pyrimidine nucleohases for efficient base pairing. Ribose thereby forms the essential part of the RNA backhone. However, ribose is difficult to form, and the source of the ribose subunits in the sugars that constitute the key stereodictating elements in nucleic acid structure remained unknown (β, δ) . We describe here the identification of precursor molecules, including rhose, in simulated precometary ices using the sensitive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) technique.

Our astrophysical scenario involves the simulation of the photo- and thermo-chemistry of precometary ices. It is based on the assumption that planetesimals (including asteroids, comets, and the parent bodies of metaorites) were formed in the solar nebula from the aggregation of icy grains

¹Universte Nice Sophia Antipolis, Institut de Chimie de Nice, UMR 7272 CNRS, 28 Avenue Valose, 06108 Nice, France. ²Synchrotron SOLEL, L'Orme des Merislers, St Aubin BP48, 91392 Cif-sur-Yvette, France. ²Institut d'Actrophysique Spatiale, CNRS, Université Paris-Sud, Université Paris-Saclay, bát 121, 34:05 Orsay, France. ²Centro de Investig aciones Quimicos, Universitád Autóinorma del Esta do de Moreixe, Avenida Universitád 2001, 62:09 Cuernavaca, Mexico. ²Aarhus Universitád 2001, 62:09 Cuernavaca, Mexico. ²Aarhus Universitád 2000, Aarhus, Dermark. ⁴Correspondig author. E mail: comellametinentifiumicolit (CM); useumeint heinkinRainisch (CJM).

Fig. 1. Aldoses and ke toses as identified in a sample generated under simulated precometary conditions. The structures of sugar alcohols, monosaccharides, and saccharinicacids are indicated along with the amount of the identified analyte in the simulated ice sample. Identified C-6 analytes are not included. The Fischer projections indicate the p-enantiomer form only. ppm, parts per million by mass gl., guantification limit: d.L. detection limit.

Sugars!!

Fig. 2. Multidimensional gas chromatogram showing ribose and other monosaccharides in the organic residue from an evolved precometary ice analog. See also fig. S1 and movie S1 (7). The atomic mass units 206 and 294 were selected for the multidimensional chromatographic representation. D- and L-enantiomers of the monosaccharides were not resolved.

Summary

- UV irradiation of H₂O:CH₃OH ice mixtures leads to the formation of sugar alcohols, sugars, and sugar acids.
- Suggests a pathway in which sugar alcohols are formed first (from methanol/formaldehyde?), then sugars, then sugar acids (increasing oxidation products).
- This distribution is different from Murchison and Murray (no sugars except dihydroxyacetone).
- Many other GC-MS peaks are consistent with the presence of other sugar-like compounds [NIST library], including unidentified deoxy versions of sugars and sugar derivatives, carboxylic acids/diacids, and ketones with several OH groups.

Sugar-related compounds in meteorites

Cooper et al. (2001)

Work in Progress

- Use of ¹³C-labeled methanol (¹³CH₃OH) shows that all photoproducts seen are made in the experiment and are not due to any biological contamination.
- Add CO₂ as a carbon source in the starting ice mixtures: UV irradiation of H₂O:CO₂ and H₂O:CH₃OH:CO₂ ices leads to the formation of more sugar acids.
- Add NH₃ to the starting mixtures: UV irradiation of H₂O:CH₃OH:NH₃ (10:5:1) ice mixtures leads to the formation of shorter and smaller amounts of sugar alcohols, sugars, and sugar acids, suggesting an inhibiting effect of NH₃.

Future Work

- Perform similar experiments with starting ice mixtures which include other carbon sources (CO) and/or nitrogen sources (HCN).
- Perforom similar experiments with starting mixtures mimicking more realistic astrophysical ices (containing H₂O, CH₃OH, CO, CO₂, CH₄, and NH₃)

Acknowledgments

• People:

- Scott Sandford (NASA Ames)
- George Cooper (NASA Ames)
- John Michael Saunders (UC Santa Cruz)
- Christopher Materese (NASA Ames)
- Funding:
 - NASA Exobiology Program
 - NASA Astrobiology Institute

Obrigado! Any questions?

Astrochemistry Laboratory at NASA Ames Research Center http://www.astrochem.org/